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Abstract

Audio fingerprinting is a process that uses computers to analyse small clips of music record-

ings to answer a common question that people who listen to music often ask: “What is

the name of that song I hear?” Audio fingerprinting systems identify musical content in

audio and search a reference database for recordings that contain the same musical fea-

tures. These systems can find matching recordings even when the query has been recorded

in a public space and contains added noise. Different audio fingerprinting algorithms are

better at identifying different types of queries, for example, queries that are short, or have

a large amount of noise present in the signal. There are few comprehensive comparisons

of fingerprinting systems available in the literature that compare the retrieval accuracy of

fingerprinting systems with a wide range of querys.

This thesis presents an overview of the historical developments in audio fingerprinting,

including an analysis of three state-of-the-art audio fingerprinting algorithms. The thesis

introduces factors that must be considered when performing a comparative evaluation of

many fingerprinting algorithms, and presents a new evaluation framework that has been

developed to address these factors. The thesis contributes the results of a large-scale

comparison between three audio fingerprinting algorithms, with an analysis recommending

which algorithms should be used to identify music queries recorded in different situations.
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Résumé

Le système d’empreinte audio est un procédé qui analyse de courts extraits de musique

avec un ordinateur pour répondre à une question courante : � Quelle est le nom de cette

chanson que j’écoute ? �. Les systèmes d’empreintes audio identifient le contenu musical

d’un enregistrement et cherchent des documents sonores possédant les même traits musi-

caux au sein d’une base de données de référence. Ces systèmes sont capables de fonctionner

même si les requêtes qui leur sont transmises sont enregistrées dans un espace public, avec

de nombreuses sources de bruit extérieur. Les différents algorithmes d’empreinte audio se

distinguent par le type de requête qu’ils peuvent traiter : certains se concentrent sur des

requêtes de courte durée, d’autres sont optimisés pour pouvoir être performant même dans

des conditions de bruit très défavorables. Dans la littérature, il existe peu d’études compa-

ratives poussées traitant spécifiquement des performances des systèmes de reconnaissance

par empreinte audio dans un large éventail de cas.

Cette thèse présente une vue d’ensemble de l’histoire du développement des systèmes

d’empreinte audio. Cette thèse introduit en suite des facteurs qui doivent être pris en

compte lors de l’évaluation comparative de plusieurs algorithmes pour la reconnaissance

par empreinte audio. De plus, ce travail présente un nouveau cadre d’évaluation développé

afin d’incorporer ces facteurs. Cette thèse combine les résultats d’une comparaison à grande

échelle de trois algorithmes d’identification d’empreinte audio avec une analyse recomman-

dant lequel de ces algorithmes est le plus efficace pour identifier la plus grande variété

d’extraits audio.
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Chapter 1

Introduction

Recorded music is pervasive in our society. It is broadcast over radio waves and on the

Internet. It is used as a background to videos, television, and movies. Shops play it in

the background while people are shopping. People carry around thousands of songs every

day on portable audio players and smartphones, with access to millions more by streaming

from the Internet. Personal music players can show the name of the recording that is

currently playing, but when listening to music in public environments it can be a challenge

to recognise every song that you listen to in a day.

It is an impressive skill to be able to listen to a small clip of music and recognise almost

immediately the title, composer, or performer of the work. Sometimes though, you may not

recognise the song, or it might be familiar and on the tip of your tongue, but you just can’t

remember the name. You may be in a cafe or shop as a song that you want to know more

information about comes on, but it is not introduced or you miss the DJ’s introduction.

Given the ever increasing amount of music written, recorded, and performed it is virtually

impossible for any one person to recognise every song. It seems suitable to delegate such a

task to a computer.

Computers have been used to develop music-related applications since the time that they

were first available in research environments (Downie 2003). Music information retrieval

(MIR), a music-specific branch of information retrieval, is concerned with using computers

to store and analyse digital collections of music in all forms (e.g., sheet music, recorded

music, metadata about music) and allow queries to obtain analyses and results from them.

Audio fingerprinting is a facet of MIR that uses computers to listen to and recognise
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recordings of songs, much like people can listen to a piece of music and say what the name

of the song is. In the audio fingerprinting process, a computer algorithm is used to analyse

a corpus of music, identifying features that can be used to uniquely identify musical works

in a corpus (an audio “fingerprint”, much like fingerprints uniquely identify people). Once a

corpus of audio fingerprints has been created, the same algorithm can be used to generate

a fingerprint of an unknown clip of audio. The corpus can be searched for fingerprints

that are the same as the fingerprint generated by the unknown query in order to retrieve

information about the recording.

1.1 Audio fingerprinting

Audio fingerprinting is used to take a short sample of an unknown audio recording and

retrieve metadata about the recording. It does this by converting the data-rich audio

signal into a series of short numerical values (or hashes) that aim to uniquely identify a

musical recording. Audio fingerprinting systems keep large databases of fingerprints for

millions of known audio recordings. To identify an unknown audio recording query, the

query’s fingerprint is generated and compared to the reference database to find recordings

that have identical or similar fingerprint hashes. Unlike symbolic music notation query

methods, such as query-by-contour and query-by-humming (Ghias et al. 1995), which use

symbolic musical information (i.e., knowledge of the instruments and specific notes played

in a segment of audio), audio fingerprinting uses lower-level spectral information in a signal

to generate a unique identifier of the audio.

An audio fingerprinting system should be able to recognise recordings of songs in the

same way that a person can. If a person can recognise a song from a short clip of audio comes

then an ideal computer system should also be able to recognise the song. This means that

a hashing algorithm should utilise the perceptual aspects of the audio contained in the file

and not just the way that the file itself is encoded digitally. These so-called content-based

identification systems (CBIDs) are named as such because they identify matches based on

the musical content of the recordings in the corpus rather than the way that the file is

stored by the computer. Furthermore, because humans are able to recognise a recording as

being the same even in the presence of small changes to the query, such as tempo variations

or noise, effective fingerprinting algorithms should also be able to correctly identify queries

that have been modified in similar ways. Haitsma et al. (2001) call fingerprinting “robust
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hashing”, because it indicates that a fingerprinting algorithm should generate a hash based

on the input that is robust to modifications to the audio that do not dramatically alter

the sound. They suggest that one approach to perform this robust hashing is to design an

algorithm that approximates the human auditory system:

A robust audio hash is a function that associates to every basic time-unit of

audio content a short semi- unique bit-sequence that is continuous with respect

to content similarity as perceived by the [human auditory system]. (Haitsma

et al. 2001, p. 2)

In order to match a query to a recording in a reference database, a fingerprinting

algorithm must generate identical hashes for the reference recording and query. The hashes

must be identical even when the query is very short, or when given a recording that sounds

similar to a human, but has a different audio signal. If a the recording has been made,

for example, with a microphone in a noisy room then the fingerprinting algorithm should

be able to separate the music in the recording from any additional noise recorded by the

microphone.

Because fingerprinting algorithms should generate similar hashes on audio that sounds

the same to an ear but may not be stored the same on disk, hash functions such as crypto-

graphic hashes are unsuitable for this task. Cryptographic hashes generate a significantly

different output when given a similar but not identical input. Two clips of audio that sound

the same to a human could have a significantly different form when stored in a computer.

Different digitisation techniques (e.g., copying to a computer from CD or from Vinyl) can

result in a different representation on disk for the same song. Perceptual coding techniques

such as MP3, Ogg Vorbis, and Apple AAC result in files that sound nearly identical but

have completely different on-disk representations. Also, because of the desired requirement

of being able to identify a segment of a recording from any point in the recording, it would

be unfeasible to create a set of hashes for all song durations starting from all points in the

song.

Reference databases of audio should contain fingerprint codes for the entire duration of

audio. This is because it is also useful to identify a song when only a portion of the song is

given as a query. This segment could be recorded from any point in the song, especially if

the recording is made in a public place from music that is being played over a PA system.
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On the other hand, fingerprint lookup systems do not need to store a copy of the

audio that is used to create the fingerprint. Fingerprints can be generated and submitted

to a database by any person with a copy of the audio. While commercial fingerprinting

systems can get fingerprints directly from the music distributors, it is also possible to obtain

fingerprints for rare music, out of print music, or music released through independent labels

directly from people who have copies of the audio.

1.1.1 Applications of fingerprinting

Audio fingerprinting is useful to a variety of people who create and consume music. In

addition to be able to identify unknown songs, an audio fingerprinting system can be used

to determine proof of ownership, to track music as it is distributed to consumers over the

radio or other distribution systems, or to add value for consumers (Gomes et al. 2003).

Consumer playback devices can check the fingerprint of an audio signal to determine

if it is authorised to play that signal. Music distributors, for example, bulk CD copying

companies, can ensure they are not unknowingly duplicating audio for which a customer

does not have a license to copy.

Broadcast monitoring can be performed to create an accurate list of the audio that

was broadcast by a radio station, for the purposes of creating a list of songs that are

broadcast. This list can be used to ensure that royalties are correctly payed to artists

whose music is played. Batlle, Masip, and Guaus (2002) call this process “song spotting”,

a process that involves first separating songs from other non-musical content in an audio

stream (e.g., separating songs from DJs talking or advertisments) and then performing

audio fingerprinting on the music segments to recognise the artist and song title. A similar

technique to song spotting is used in online services such as the YouTube video sharing

site1. The automated rights-verification system finds music that is used in the background

of videos and checks to see if the owner of the music has registered it in a reference database.

YouTube, for example, allows rights-holders to choose an action if unlicensed audio is used:

remove the audio from the video, allow the video to remain, or allow it to remain with

the addition of advertisements, the revenue of which is shared between YouTube and the

rights-holder2.

1http://youtube.com
2http://www.youtube.com/t/contentid
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Audio consumers can use fingerprinting to access value-added services related to the

songs being fingerprinted. A common use of fingerprinting allows consumers to quickly and

accurately copy music onto their computer from physical media and name it correctly for

storing and searching. Software on a computer can generate a fingerprint of each track of

music as it is copied off a CD and quickly look up artist and title metadata from a central

database. Mobile phones and personal devices have let people be closer to information

about things happening around them, including details of songs that are playing in public

or private venues. Smartphone apps, such as Shazam3 and Soundhound4 let people use their

phone to record a small segment of a song and almost immediately return information about

it, including title, artist, song lyrics, related audio, upcoming concert appearances or where

to buy a copy of the song online. These services can identify songs that are playing over

speakers in venues such as cafes or bars, even if there is other background noise such as

people talking.

A 2001 press release by the Recording Industry Association of America and the Inter-

national Federation of the Phonographic Industry (R.I.A.A. 2001) asks for proposals for

fingerprinting systems to be used in rights management, copyright enforcement, and con-

sumer audio tasks. Suggested examples for uses of fingerprinting systems included tracking

music played by terrestrial and Internet radio stations for distributing royalties, checking

if an audio file has the right to be transmitted over a network, and providing value-added

data and other promotions to people listening to certain recordings.

1.2 Requirements of audio fingerprinting algorithms

The primary purpose of an audio fingerprinting system is to identify metadata about a

song based on a short segment of the song’s audio signal. Haitsma et al. (2001) and Cano

et al. (2005) each describe a list of desirable retrieval criteria that a fingerprinting system

should fulfil:

• A system must be able to generate compact fingerprints that can be quickly located

in a reference database, with a low error rate. The reference database must able to

be updated easily with fingerprints of newly released or digitised audio.

3http://shazam.com
4http://soundhound
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• Fingerprinting systems must be able to identify audio even if it has been altered in

different ways. Some common alterations that a system should be able to recover

from include ambient noise (for example, if a recording was made in a public place

or while driving in a car), and transmission interference (a reduction in quality or

increase in noise due to the medium which the audio is transmitted through, for

example, FM radio or GSM cellphone networks).

• Recordings should be able to be identified even if the audio has been modified before

it was broadcast. For example, frequency equalisation, or audio compression may

be applied by radio stations or a home stereo system (Cano, Batlle, Mayer, and

Neuschmied 2002). Resampling of audio results in a speed-up or slow down of the

audio which results in an associated increase or decrease in the pitch of the signal.

• A fingerprinting algorithm should be reliable. It should minimise the number of false

positives returned to any query (ideally false positives should be zero). It should be

robust enough to detect audio correctly even if the query has been distorted during

recording.

• A fingerprinting algorithm should be granular, that is, able to correctly identify a

song from just a small segment of audio. This segment could come from any part of

the song, not just the beginning.

• A fingerprinting algorithm must be versatile enough to compute a fingerprint from

any format of audio signal stored on a computer.

• The fingerprint should be computationally inexpensive to generate, and adding new

songs to the database should not result in any perceptible decrease in the speed at

which lookups can be performed.

1.3 The audio fingerprinting process

Most audio fingerprinting algorithms follow a common sequence of steps when transforming

an audio signal to a fingerprint (Figure 1.1): preprocessing, framing and overlap, transform

and analysis, feature extraction, and fingerprint generation (Cano 2007).

The first step, preprocessing, converts all input signals into a common format for anal-

ysis by the algorithm. Often, this step involves converting the input to a mono signal

and lowering the sampling rate from the standard CD rate of 44,100 Hz. The exact pro-

cess differs for different algorithms. Next, an algorithm takes the time-series audio signal
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Figure 1.1 Common steps perform in audio fingerprinting algorithms to
convert audio to a fingerprint.

and converts it into a frequency-domain signal from which more information can be ex-

tracted. Framing and overlap determines how many samples to consider when calculating

a transform of a time-domain signal. Each frame has a window applied to it to assist in cal-

culations, and the frames are processed in overlapping chunks from the time-series signal.

The feature extraction process takes the signal that has been converted into the frequency

domain and selects salient features that are used to characterise the audio. Finally, once

the features have been chosen and extracted from the signal they need to be converted into

a fingerprint representation that can be stored in a database and compared to unknown

query signals.

For a full fingerprinting software suite, the procedure does not end at the fingerprinting

algorithm (Figure 1.2). Once the fingerprint has been generated, it must be stored in a

reference database. The numerical representation of the fingerprint is usually too unwieldy

to be used as an identifier (Figure 1.3), so a smaller unique identifier is used. This could

be as simple as the artist and song name, or a short unique string. A fingerprinting system

will provide a lookup service. This lookup operation should be able to take an unknown

input query and match the query’s fingerprint with a fingerprint that is in the reference

database, returning the identifier of the song that the query best matches, and optionally,
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Figure 1.2 The main processes of a fingerprinting system incorporating a
fingerprinting algorithm, and a service to look up unknown queries and return
a matching recording.

the location in the song that the query comes from. If the song being looked up is not in

the reference database, the fingerprinting system should report that the song is not in the

database, rather than giving a wrong answer.

168069 13 465942 13 52579 13 558476 13 739869 13 741460 13 380305 14

415399 14 661073 14 709215 14 74563 14 82703 14 1002532 15 1030366 15

106211 15 187156 15 348044 15 351350 15 35265 15 395259 15 403763 15

45438 15 474191 15 557925 15 793952 15 860815 15 883227 15 887181 15 90861

15 971810 15 1000650 16 405802 16 664990 16 771321 16 80513 16 949484

16 414620 38 47256 38 620886 38 63360 38 806318 38 971075 38 1007816 39

1014266 39 1022230 39 1036491 39 224005 39 340504 39 342618 39 394503 39

Figure 1.3 An example of a portion of a fingerprint from the Echoprint
algorithm, consisting of a series of hash value and timestamp pairs. The
full fingerprint for this 3 minute, 35 second long song is 58 kilobytes in size.
The Echoprint server internally refers to this song with the identifier TR-
MQSLA132F3989B92

1.4 Contributions of this thesis

This thesis provides a survey of the current state of the art in audio fingerprinting al-

gorithms. It gives an overview of many current algorithms and also provides an in-depth

study of three algorithms that are currently in widespread use commercially and in research

projects.
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We perform an evaluation of the three algorithms, and present statistics on the ac-

curacy of the three algorithms for performing fingerprint lookups on a large collection of

music. The audio queries are made to the fingerprinting systems are modified to simu-

late different scenarios that may be encountered when performing a fingerprinting lookup,

such as short queries, damaged audio, degraded audio, and audio mixed with a noisy en-

vironment. This broad evaluation directly compares different fingerprinting algorithms in

identical situations. As part of the evaluation, we have developed an extensible evaluation

suite. This suite allows fingerprinting algorithms to be tested repeatedly under the same

circumstances and collects results of each evaluation and helps in generating statistics. This

evaluation platform can be used by other researchers to test new fingerprinting algorithms

in a controlled environment.

1.4.1 Fingerprinting algorithms used in the evaluation

There are a large number of fingerprinting algorithms that have been developed. Different

algorithms perform the fingerprinting and identification steps differently, and have different

strengths in recognising types of music. For the evaluation in this thesis we chose three

algorithms that use different techniques to generate a fingerprint. We chose these specific

algorithms for two reasons. The first reason is because they all use significantly different

techniques for generating a fingerprint. The second reason is because each algorithm is

freely available to download and run on a server. By running our own version of the server

we are able to carefully control the audio that is added to the database and so can tell

if the result returned by the algorithm is correct or not. The algorithms are: Echoprint

(Ellis et al. 2011), Chromaprint (Lalinský 2012), based on the algorithm presented by Ke,

Hoiem, and Sukthankar (2005), and a landmark hashing algorithm (Ellis 2009), based on

(Wang 2003). The algorithms are all used actively in commercial (Echoprint), community

(Chromaprint), and research (Landmark) environments. Each fingerprinting algorithm has

freely available source code for both the fingerprinting component and the lookup system,

which we make use of in the evaluations.

1.5 Organisation of this thesis

The rest of this thesis is organised as follows: Chapter 2 performs a review of the history

of audio fingerprinting and other closely related technologies. Current commercial and
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research uses of fingerprinting are also discussed. Chapter 3 provides an in-depth review of

the three algorithms chosen for this experiment. The review covers the signal processing

specifics about how the fingerprinting algorithm generates its fingerprints and how lookups

are performed. Chapter 4 describes the experiment designed to compare the accuracy

of retrieval of these three algorithms. The results for the experiment are described in

Chapter 5. An overview of the thesis, experiment, and concluding remarks are given in

Chapter 6.
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Chapter 2

Audio Fingerprinting: An overview

Computers have been used for music-related retrieval tasks for almost as long as they have

been available for research (Foote 1998). Audio fingerprinting, however, is a fairly recent

application of signal processing techniques to music information retrieval. Up to the end of

the 1990s, there was little research on audio fingerprinting. Instead most music information

retrieval research centered around symbolic retrieval of music, and automatic classification

of music based on style or instrument.

This chapter begins by giving an overview of music information retrieval technolo-

gies which contain aspects that were later developed into audio fingerprinting systems. It

continues with an outline of the audio fingerprinting process, with examples of different

techniques used by a number of different researchers. It concludes with an overview of

current commercial applications of audio fingerprinting.

2.1 Related audio retrieval techniques

Music information retrieval techniques have increased in scope and complexity since com-

puters were first used in connection with music-related applications. Often the complexity

of techniques increased as the power of contemporary computers allowed more interesting

musical features to be calculated. This section describes a number of information retrieval

techniques that were developed either as precursors to audio fingerprinting, or use similar

signal processing techniques to perform analysis of audio.
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2.1.1 Query by humming

Query by humming (QBH) (Ghias et al. 1995) is a technique that lets a person get infor-

mation about an unknown song by humming or singing the main melody of the song. A

QBH system transcribes the query into symbolic form and then searches for the melody

in a database of symbolic song melodies. By representing the melody as a string of char-

acters, existing fuzzy string matching techniques can be used to find partial matches of

melodies in a reference database. The effect of mistakes in the sung query can be reduced

by representing melodies and search queries as contours–a string of characters indicating

only if each note is higher, lower, or the same as its preceding note. Even with these fuzzy

matching techniques, QBH systems can encounter problems if the melody as sung by a

person is sufficiently different from the stored melody, or if the searcher sings a melody

that is not stored in the database (Byrd and Crawford 2002). Automatically transcribing

an audio signal into a score, and finding a salient melody in a polyphonic score are still

active research problems (Poliner et al. 2007). Song, Bae, and Yoon (2002) reduce some of

the requirements to accurately transcribe a sung query by using what they call a “mid-level

melody representation”. This representation of a melodic phrase describes a query by its

spectral content than transcribing the audio signal into symbolic notes which allows for a

less-exact matching system to be used, reducing the effect of incorrectly sung queries.

2.1.2 Query by description

An early method of retrieving audio data from a computer database was query by de-

scription. In this kind of system, a database holds a list of audio files along with a textual

description of each clip. These systems are able to retrieve music both by description of the

sound itself (e.g., thunder or applause) and by a description of the the music (e.g., music

with a saxophone and piano playing). These type of systems are implemented as a text

search database. For example, to find all pieces of audio with a saxophone, such a system

would simply find all occurrences of a tag “saxophone”. Early versions of these databases

were manually annotated, that is, the description of each audio clip was entered by a person

(Foote 1997). As databases of music grew larger, it began to take longer and longer for

expert listeners to label sounds. At the time the development of social tagging on the In-

ternet had yet to be developed, and so what now might have been solved by crowdsourcing

was not an option. A problem with manual annotation of audio is that descriptions can
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be subjective, and use different words to what was used in a query. For example, an audio

clip tagged with the word “sax” may not be returned for the query “saxophone”.

2.1.3 Query by example

As databases grew too large to annotate manually, computer systems were developed to

automatically identify the sounds in audio clips and identify either the instrument or the

type of noise (e.g., door slam, scream). Wold et al. (1996) and Pye (2000) use Hidden

Markov Models (Rabiner and Juang 1986) to create models of each sound. When presented

with an unknown sound, the same analysis is performed and the model is used to predict

a label for the sound. Wold et al. (1996) take clips of audio and measure the loudness,

pitch, brightness, bandwidth, and harmonicity of the audio signal. This information is

first used to determine if there is more than one sound in the clip, with a large sudden

variation in these measurements can indicate a new sound. Once individual sounds have

been isolated, the system is trained by taking these features and a manually provided

description of the sound. The system learns what values of each feature correspond to

each description. Subramanya, Simha, Narahari, and Youssef (1997) identify features after

transforming the audio with the Harr transform, discrete Fourier transform (DFT), and

discrete cosine transform (DCT). In experiments, the DCT was found to create features

that most accurately identified audio clips.

2.1.4 Similarity retrieval

Cover song detection algorithms find different recordings of songs. These different record-

ings could be performed by the same performer (e.g., studio and live recordings), by different

performers, or could be “radio edits”—a modified version of a recording made for playback

on commercial radio.

Cover song detection systems share some signal processing techniques with fingerprint-

ing systems. They often use similar methods to reduce the dimensionality of input audio

and then characterise the spectral content as a numerical hash. A similarity detection

system then performs a similarity measure on the generated hashes. These matching al-

gorithms allow more variation in these hashes than fingerprinting algorithms (Miotto and

Orio 2008; Foote 2000). Similarity measure systems often take into account the entire struc-
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ture of a song, rather than using a short 10–20 second query as a fingerprinting systems

do.

Detecting different recordings of Western classical music can be considered a special

case of cover song detection. Because each recording of a Western classical work(e.g., a

movement of a symphony) is performed from the same score, the overall structure of the

audio is the same regardless of what orchestra records the music. While two different

recordings of the same score may be played at different speeds, points in the score are

time-invariant, occurring at the same relative location in each recording. distance between

points in the score remain the same. Yang (2001) matches Western classical music by

identifying spectral peaks in a recording. Recordings by different orchestras should have

peaks that are positioned with the same ratios of distances between them. Other classical

music matching systems treat this detection as a specialised subset of cover song detection

(Crawford, Mauch, and Rhodes 2010; Müller, Kurth, and Clausen 2005).

2.1.5 Watermarking

Audio watermarking is the act of inserting hidden information into an audio stream, that

cannot be detected by the human ear. It can be used for many of the same uses as finger-

printing, for example, discovering the copyright status of a song, or providing metadata for

a given recording. Additional metadata can be included in a watermark, including both

information about the work or artist, or additional information (e.g., news broadcast from

a radio station along with a song). Audio watermarking techniques are able to store data

in an audio stream at rates of up to 150kbps, providing enough space to include metadata

about the currently playing song, or even artwork.

Because watermarking physically affects a signal, it is important to choose a technique

that is inaudible to a person. This suggests adding the watermark to a part of the auditory

spectrum that is too high for most people to hear. A disadvantage of using this part of the

spectrum is that many perceptual coding techniques such as the MP3 format remove parts

of the spectrum that are inaudible to people. Therefore a good watermarking algorithm

must be robust against encoding formats that modify the audio signal.

Unlike audio fingerprinting, watermarking does not require a centralised lookup database.

This means that devices that check for the validity of streams do not need to have either a

local database of fingerprints (that could quickly get out of date), or an Internet connection
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to connect to a central server that compares fingerprints. The advantage of watermarking

is that there is no central server that must remain operational in order for other systems

to run.

Fingerprinting has an advantage to watermarking in that it can be applied retroactively

to a library of audio. An effective watermarking system must be developed before the first

piece of audio is released with embedded watermarks, and improvements cannot be applied

to audio that has already been released.

Watermarking and fingerprinting can be combined for verification purposes. Gomez

et al. (2002) use an existing audio fingerprinting technique (Neuschmied, Mayer, and

Batlle 2001) to generate a fingerprint of an audio file and then embed that fingerprint

in the audio file itself as a watermark. This technique allows a playback system to verify

the integrity of an audio file before it is played and ensure that it has not been tampered

with.

Watermarks that guarantee the authenticity of an audio file, need to be digitally signed

in order to prevent tampering. By signing a large number of signals with the same key, a

malicious attacker may be able to derive components of the key by statistical analysis of

many signals. Mıhçak and Venkatesan (2001) present a solution that uses a component of

the audio’s fingerprint as part of the key to make deriving the key more difficult.

Gomes et al. (2003) compare fingerprinting and watermarking and discuss the potential

applications for both techniques. They suggest that while both fingerprinting and water-

marking can both be used for copyright protection purposes, watermarking can be more

versatile because it can store any kind of information in the watermark, whereas finger-

printing can only identify a recording. They state that watermarks need to have a low

energy so that they are not audible in a recording. This makes them more prone to distor-

tion and unable to be read if the audio file is damaged or encoded using low bitrate audio

formats. Fingerprinting is a more robust method for identifying a recording. Because the

reference database is separate from the audio, unlike watermarks, it can be updated at any

time with new information.

2.1.6 Graphical Audio Summaries

Graphical audio summary algorithms generate a graphical image that uniquely represents

the structure of a recording. Like audio fingerprints, these summaries can be used visually
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identify recordings without listening to the audio of the recordings. Images are more

easily comparable by people than the numerical representation that an audio fingerprinting

algorithm generates. Audio summary algorithms generally use the same computation steps

as a fingerprinting algorithm, but produce a graphic as their final output representation

(Yoshii and Goto 2008). Bartsch and Wakefield (2005) generates auditory summaries of

music by finding repeating phrases such as a chorus and renders it to audio.

2.2 Audio fingerprinting techniques

This section presents an overview of existing fingerprinting algorithms. An analysis of the

three fingerprinting algorithms evaluated in this thesis (Ke et al. 2005; Wang 2003; Ellis

et al. 2011) is presented in Chapter 3.

Section 1.1 introduced the idea that audio fingerprinting systems should recognise music

in a manner similar to that which people use to recognise music. In order to perform this

recognition, fingerprinting algorithms must extract meaning from the audio signal. One

way to extract meaning is to compute features of the audio, where a feature could be some

element with musical meaning (e.g., the pitch of musical content, or the rhythm of the

music), or could be based upon computed qualities of small segments of audio. Different

fingerprinting algorithms extract different types of features, and the specific algorithms

will therefore have different characteristics based upon the nature of the features computed

from an audio signal.

Fingerprinting algorithms convert features in to numerical codes, or hashes, that repre-

sent the value of a feature. If similar sounding features generate the same hashes then the

fingerprinting system can find matching audio by identifying identical codes.

Most audio fingerprinting algorithms calculate features from the audio domain, usually

using the Fourier transform. The short-time Fourier transform (STFT) calculates the

frequency content at fixed time points along the audio signal, generating analysis frames.

Features are often calculated on a per-frame basis. It is common for algorithms use features

that reflect music or the way people hear music, and so usually analyse the spectrum in

logarithmically spaced bands.

This section describes the ways that different algorithms convert audio features in to

numerical fingerprints. The first part describes algorithms that compute codes directly
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from the values of the features. The second part introduces algorithms that use machine

learning methods to convert features to hashes.

2.2.1 Computing codes from features

Amplitude

Papaodysseus et al. (2001) present a system designed to work on radio broadcast audio that

does not have any additional noise present in the signal. This system works by splitting

the audio into frames and taking the discrete Fourier transform. The spectrum of each

frame is split into 48 exponential bins. From these bins, a “band representative vector”

is created, with each element containing a 1 if there is a spectral peak in that frequency

bin and a 0 if not. To determine if a query exists in the database, a band representative

vector for a query is calculated and the database is searched. Matches are identified if

band representative vectors only differ in 2–3 bits (when a spectral peak may not exist in a

query where it does in the database. Band vectors compared by performing a bitwise and

operation between two vectors. The algorithm can match queries to a reference database

even if there is a small increase in speed (up to 4%) or frequency boosting in the audio

query.

Wang (2003) describes the algorithm that is used in the Shazam music recognition

service. The algorithm takes a short-time Fourier transform of the audio and selects a

“constellation” of spectral peaks that have an amplitude that is larger than the peaks in

a surrounding area. The time and frequency distances between pairs of these peaks is

encoded into a hash that represents the audio. This algorithm is discussed in more detail

in Section 3.3.

Baluja and Covell (2008) use a wavelet transform (Graps 1995) to convert an audio

signal into the time domain. They then use a similar method to Wang (2003) to generate

fingerprint codes from the distance in time and frequency between nearby audio peaks.

The Philips algorithm and improvements

Haitsma, Kalker, and Oostveen (2001) develop an accurate fingerprinting algorithm that

has become well known for its accuracy, gaining the name of the “Philips algorithm” after

the research group that they worked at. First, each audio frame is converted into the

frequency spectrum using the Fourier transform. The spectrum between 300Hz and 2000Hz
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is then split into 33 bands according to the bark scale, where each band has the bandwidth

of a musical tone. The difference in energy between each band is encoded as a 0 or a 1

depending on if the energy between the bands increases or decreases. This results in a 32-bit

value per sub-fingerprint. A fingerprint is made up of 256 sub-fingerprints, corresponding

to about 3 seconds of audio. A custom index system is used to provide fast lookups of

queries into a reference database. Each sub-fingerprint hash in the query is looked up in

the reference database, and all tracks that contain this hash are added to a candidate list.

The candidate match that has the lowest bit error rate to the query fingerprint is given as

the matching track. This lookup system requires there to be at least one sub-fingerprint

between the query and reference fingerprint, otherwise it will not return a match.

Aspects of this general algorithm have been improved and analysed by numerous pub-

lications. Doets and Lagendijk (2004) and Balado, Hurley, McCarthy, and Silvestre (2007)

both perform theoretical analyses of the algorithm to generate models of it, the first to char-

acterise how the output changes with the audio is compressed, and the second to determine

the upper probability that no sub-fingerprints of differing audio share an identical hash.

Kashino, Smith, and Murase (1999) and Kimura, Kashino, Kurozumi, and Murase (2001)

present improved lookup times for searching for candidate matches. Miller, Rodriguez, and

Cox (2005) increases lookup speeds by building a 256-ary tree for fast lookups—with one

branch for each candidate sub-fingerprint. Liu, Cho, Yun, Shin, and Kim (2009) shows how

with heavily distorted query signals there may not be at least one identical hash between

the reference recording and the query. In this situation, a match would not be found. To

increase the chance of a match in this situation, the new proposed algorithm generates

two separate hashes using different techniques. The second hash is created by taking the

discrete cosine transform (DCT) of the initial sub-fingerprints. These “metahashes” are

stored in another hash table and both hashes are used to select candidate tracks. Results

show that with especially noisy query signals, the dual-hash system correctly identifies a

larger number of queries.

Onsets

The Echo Nest Musical Fingerprint (ENMFP) (Ellis et al. 2010) and Echoprint (Ellis

et al. 2011) use the difference in time between musical onsets (generally equivalent to the

beginning of notes) Echoprint calculates onset features in eight evenly spaced frequency
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bands from 0–5512Hz. ENMFP calculates onsets by using a comb filter to perform beat

detection Jehan (2005). The time difference between pairs of onsets is combined with the

frequency band that the event occurs in to create a hash. More details about the fingerprint

and lookup process of Echoprint are presented in Section 3.1.

2.2.2 Computing codes with machine learning

Some audio fingerprinting systems use machine learning methods to convert audio into

fingerprint codes. These systems have a “training” process where a machine learning model

is used to map musical sounds to identifiers. When performing a lookup process the query

audio is processed in the same way and the generated model is used to predict the identifiers

that create the audio signal. The identifiers can be compared to the identifiers created using

the import process.

Kastner et al. (2002) converts audio to the frequency domain and then calculates the

spectral flatness of each frame. Spectral flatness characterises how ‘tone-like’ a sound is,

compared to noise. The algorithm uses the Vector Quantization (VQ) pattern recognition

method to cluster similar flatness values together. Queries are matched by finding the

nearest neighbours of the flatness values generated by the query audio and are matched

the reference track that gives the most number of closest matches. Allamanche, Herre,

Hellmuth, Fröba, Kastner, and Cremer (2001) creates a VQ model in the same manner

as Kastner et al. (2002) but use a vector of psychoaccoustic features to represent each

frame, including loudness, flatness, and sharpness. The spectral flatness method described

by Kastner et al. (2002) is formally specified in the MPEG7 standard (Chang, Sikora, and

Purl 2001), a content description standard published by the Motion Picture Experts Group

(MPEG).

Batlle, Masip, and Guaus (2002) use MFCCs (Mel-frequency Cepstral Coefficients) as

a method of extracting features and create models of stored audio using hidden Markov

models (Rabiner and Juang 1986). In order to reduce the effect of noise on the audio

query, they model noise using a linear filter and apply its inverse to the audio query before

generating a fingerprint. The HMMs are used to create a sequence of states that represent

frames of the recording. A full recording is represented by an ordered set of states. To find

a match, a query is split into frames and the most likely state to create each segment is
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calculated using the Viterbi algorithm. The model can also be used to find if recordings

have been edited (sections removed) or if two different recordings have been mixed together.

Cano et al. (2002) present a system called AudioDNA which uses sequence matching

methods from biology and text searching. Audio is converted into the frequency spectrum

with a Fourier transform the spectrum is split into MFCCs. An HMM is trained to represent

similar MFCCs with one of 32 ‘genes’. A clip of audio is represented by a sequence of

these genes. Queries are matched by creating a gene sequence by using the HMM to

estimate genes for each MFCC and are then compared to the gene sequences in the reference

database.

Ke, Hoiem, and Sukthankar (2005) build on the matching technique developed by

Haitsma, Kalker, and Oostveen (2001). The method uses a machine learning algorithm

called Adaboost, with an iterative thresholding algorithm to find the best way to create

black and white image masks that can be applied to a spectral representation of the audio.

These image masks are created outside of the fingerprinting process, and are part of the

algorithm. Once black and white masks are applied to the audio file then matches are per-

formed by finding subfingerprints with low bit-error rates. A variation of this algorithm,

Chromaprint, is discussed further in Section 3.2.

2.2.3 Increasing fingerprinting speed

Speeding up fingerprint calculation

Transforming audio content into the frequency domain is a computationally expensive pro-

cess. Some algorithms use methods to reduce the computation time needed to generate

the frequency bands. Pye (2000) skip the transform step by performing fingerprinting on

MP3 files. MP3 encodes information about each frequency separately, so this data can

be directly extracted out from the file. Seo, Haitsma, and Kalker (2002) use a Fourier-

Mellin transform, which is faster to compute than a Fourier transform. The Fourier-Mellin

transform also results in fingerprint that is robust to speed increases by up to 10%. The

fingerprint hash is calculated in a similar manner to Haitsma and Kalker (2002). Pa-

paodysseus et al. (2001) uses an adaptive FFT, which uses the results from the previous

frame’s FFT calculation as a starting point for the current frame’s transform.
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Speeding up lookups

Audio fingerprinting systems need to perform lookups of queries quickly. As more files are

added to the reference database they should remain fast. An approach to maintaining a

fast lookup speed while performing query lookups is to split up the reference database over

many machines and send the query to all database machines simultaneously. Each lookup

machine will return the best match given the contents of that machine’s database, and then

the best match of all results is chosen and returned to the client. Mahedero et al. (2004)

use a cluster of machines communicating using CORBA to perform a distributed search

and collate results. They use their previously published fingerprinting algorithm (Batlle,

Masip, and Guaus 2002) to perform the fingerprinting process. Shrestha and Kalker (2004)

integrates a distributed fingerprinting system using the algorithm developed by Haitsma

and Kalker (2002). This system integrates a distributed peer-to-peer filesharing application

that has knowledge of the content being shared between peers. The system can request an

identification of a music file and if another node on the network reports it as being copy

protected the file is not transferred.

2.2.4 Commercial Fingerprinting systems

Systems that accurately perform audio fingerprinting are useful in a commercial context.

As has already been discussed, there is lots of interest in using fingerprinting in systems to

monitor the distribution of audio, and for verifying that audio is authorised to be played.

An early application to enter into the digital music scene, Napster, was ordered as part

of a court settlement to integrate fingerprinting into its application. Napster was a peer-

to-peer file sharing application that allowed computer users to download MP3s of songs

from other users on the network. Napster implemented the Relatable1 algorithm in their

software (Cremer et al. 2001).

In a similar copyright infringement detection system, Google uses both audio and video

fingerprinting on its video sharing site, YouTube. YouTube lets any person with an account

upload videos to be watched by anyone else who visits the site. In response to complaints

by the music industry about the use of copyrighted material, Google released a content

identification system that recognises when a copyrighted song is being played as the audio

track of a video. The YouTube system lets rights holders determine the action to be carried

1http://www.relatable.com
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out if a copyrighted song is put on a video: silence the audio; place advertisements on the

video and take part in the revenue stream generated; remove the video from YouTube

completely; or take no action2.

In consumer-facing applications, audio fingerprinting has found success in recording

identification in public areas. The Shazam3 and Soundhound4 smartphone applications

record a segment of a song playing in a public area, such as a cafe or on a radio and return

information about the song being played. Early versions of Shazam recorded audio over

the cellphone network, and returned metadata in a text message to the calling phone. This

required a fingerprinting algorithm that was robust to not just ambient noise, but also

to the degradation present in GSM phone codecs (Wang 2006). Shazam was developed

before the use of smartphones, and was initially designed to record audio over a phone call.

Because the transmission of voice calls is designed to efficiently carry voice and not music

the algorithm needed to be robust to the significant reduction in signal bandwidth that

the phone network imposed. With the release of these applications on smartphones, the

fingerprint can be calculated on the device, though the recording quality is still low because

of the device microphones. Shazam and Soundhound also provide additional services over

song identification, for example related information about the artist and song, song lyrics,

and links to purchase the song from an online store.

Other companies that provide commercial fingerprinting services include Gracenote5,

Relatable6, and Amplifind Music Services7.

2.2.5 Fingerprinting services

In non-commercial systems, audio fingerprinting has found a use among music fans and

consumers. The online music encyclopedia MusicBrainz8 aims to create a comprehensive list

of all recorded music and musicians. It contains mappings from two fingerprinting systems,

PUID and Chromaprint, to recordings that are listed in its database. Fingerprints and

mappings are contributed by volunteers who generate fingerprints from recordings copied

2http://www.youtube.com/t/contentid
3http://shazam.com
4http://soundhound.com
5http://www.gracenote.com
6http://www.relatable.com
7http://www.amplifindmusicservices.com
8http://musicbrainz.org
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from CD, or otherwise recorded into a digital format. The result of this mapping can

be used to accurately update metadata in audio files in an automated manner. Track

metadata can be looked up by the fingerprint of a file, reliably identifying an unknown file.

Musicbrainz originally used Relatable’s TRM fingerprinting service9, before switching to

PUID (Holm and Hicken 2006) in 2006. Recently (2012) they have changed to AcoustId10,

an open-source implementation of Ke, Hoiem, and Sukthankar (2005).

Last.fm11 provide a service that lets music listeners report in real time what song they

are listening to (“scrobbling”). The site provides music listening recommendations based on

collaborative filtering using the large number of listener contributions. Last.fm developed a

fingerprinting service in order to more accurately identify songs as members were listening

to them, rather than needing to rely on potentially error-prone metadata12.

More recently, The Echo Nest13 released two fingerprinting systems, ENMFP (Ellis,

Whitman, Jehan, and Lamere 2010), and the open source Echoprint (Ellis, Whitman, and

Porter 2011), which is discussed in further detail in Section 3.1, for use by music developers

to accurately link audio and music metadata in the Echo Nest developer ecosystem. The

fingerprinting services allow developers to upload a recording’s fingerprint and gain access to

metadata, analysis information, and cross-referenced metadata to a number of other music

services on the Internet. The fingerprinting algorithm and software for the lookup server are

released under open-source licenses, allowing developers to set up separate fingerprinting

servers for private use.

2.3 Measuring statistics

A fingerprinting answer can give the correct answer to a query or it can give the incorrect

answer. The accuracy of fingerprinting systems can be evaluated by calculating the pro-

portion of correct answers that they provide. The retrieval of a fingerprinting system is

measured as a fraction of how many queries it successfully identifies out of all queries that

were given to it. This is one of the most common rates reported in the literature (Kastner

et al. 2002; Wang 2003; Baluja and Covell 2007; Jang et al. 2009; Fenet et al. 2011)

9http://www.relatable.com
10http://acoustid.org
11http://last.fm
12http://blog.last.fm/2007/08/29/audio-fingerprinting-for-clean-metadata
13http://the.echonest.com
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Cano, Batlle, Mayer, and Neuschmied (2002) and Jang, Yoo, Lee, Kim, and Kalker (2009)

report only the number of errors made, including errors where a query was not retrieved

when it should have been (false negative) and where the wrong recording was retrieved

from a query (false positive). The rate at which false negatives and false positives occur

are also called type I and type II error rates, respectively (Lutz 2009). As well as a single

accuracy rate, Fenet et al. (2011) report the false alarm rate—how often the system gives

a result when the query was known to not be in the database.

Some fingerprinting systems can be configured to trade off the number of correct re-

sults to the number of times that it does not return an answer. To visualise this tradeoff

between recall and precision as a parameter of the system changes, the Receiver Operator

Characteristic (ROC) curve can be used. Covell and Baluja (2007) and Chandrasekhar,

Sharifi, and Ross (2011) compare the accuracy of different algorithms as the accuracy rate

is changed.

Ellis, Whitman, and Porter (2011) Present a weighted metric, Perr which measures the

probability that the retrieval algorithm will make a mistake when given a query. It gives

more weight to false positives than to false negatives, with the rationale that giving an

incorrect answer is worse than reporting that a query is not in the database.

2.4 Evaluating fingerprinting accuracy

For fingerprinting algorithms that are resilient to noise in the query signal, there is a com-

mon set of alterations that simulate the effect of noise on queries in order to test the

robustness of an algorithm. The alterations should be representative of real-life degrada-

tions that could be applied to a query signal in fingerprinting situations. Haitsma, Kalker,

and Oostveen (2001) show a comprehensive list of signal degradations, which include

• Downsample to a lossless codec (e.g., MP3) at 128kbps and 32kbps bitrates

• Apply an allpass filter

• Apply audio compression

• Apply equalization

• Add echo to the query

• Pass the query through a bandpass filter

• Resample the query to a different bitrate (and therefore change the pitch)
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• Introduce noise by converting to analog (recording to tape) then convert back to

digital

Herre, Allamanche, and Hellmuth (2001) perform a similar list of alterations, including

changing the amplitude of the query signal (both by a constant value, and with compres-

sion), resampling the query with a speed change, performing EQ, encoding as MP3, and

adding background noise.

Chandrasekhar, Sharifi, and Ross (2011) measure the suitability of fingerprinting algo-

rithms for mobile devices, for example, the effect of encoding a query using the GSM audio

codec, which is often used by cellphones. Their comparison of three different fingerprinting

algorithms only measures a fingerprinting algorithm’s suitability to being used in a mobile

device, and thus concentrates on statistics like computational power required to calculate

the fingerprint, and the size in bytes of the fingerprint for transmission.
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Chapter 3

Analysis

This chapter presents an overview and analysis of the three audio fingerprinting systems

that are evaluated in Chapter 5 of this thesis.

These algorithms were chosen because of their availability and reputation in the aca-

demic and audio communities. Each algorithm has a freely available implementation which

can be run as a standalone server. This ability to run a server independently from any

hosted service was an important requirement as it allowed us to host our own servers con-

taining a known dataset of audio that we could use to verify the results of a fingerprint

lookup from.

We describe the fingerprinting, storage, and lookup processes for the following finger-

printing algorithms:

• Echoprint: A freely available audio fingerprint algorithm1 and server2 created and

released by music technology company The Echo Nest, described by Ellis et al. (2011).

The algorithm is designed to be robust against noise in queries and the server is

scalable to support over 50 concurrent queries per second. Both the fingerprinting

algorithm and the server are made available under the open source licenses (MIT and

Apache 2.0, respectively). The Echo Nest hosts a fingerprint server that performs

over 5 million lookups per day3.

1https://github.com/echonest/echoprint-client
2https://github.com/echonest/echoprint-server
3http://notes.variogr.am/post/27796385927
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• Chromaprint: An implementation of the algorithm described by Ke et al. (2005),

with some features from Jang et al. (2009) and Müller, Kurth, and Clausen (2005).

The Chromaprint system is used by the Musicbrainz project, described in Section 2.2.5.

An accompanying server application, Acoustid, provides a database of fingerprints

and a server to look up queries on. At the time of writing the hosted Acoustid ser-

vice4 contains 14 million fingerprints representing over 5 million distinct songs and

performs about 2 million lookups per day5. The Chromaprint algorithm is released

under the Lesser GPL license and the server under the MIT license.

• Landmark: A Matlab implementation of Wang (2003), also referred to commonly

as the “Shazam algorithm”, due to it being the basis of the commercial Shazam

audio fingerprinting service6. Shazam performs over ten million lookups from around

the world every day7. It can identify an unknown audio segment recorded by a

mobile phone in a noisy room in under 10 seconds. This implementation of the

algorithm provides the fingerprinting and server/lookup process. It is available online

for download8. This implementation is often in other literature when comparing the

Shazam algorithm to other fingerprinting algorithms (Chandrasekhar, Sharifi, and

Ross 2011; Fenet, Richard, and Grenier 2011).

3.1 Echoprint

The Echoprint algorithm works by finding onsets—points in time where musical notes

occur. Features are created by calculating the difference in time between subsequent onsets

and creating a hash of these time values. Matching recordings are found by looking for

identical hashes in the reference database.

3.1.1 Preprocesing and transform

Audio signals coming in to the Echoprint algorithm are converted to mono and their sample

rate is reduced to 11025 Hz. In order to prevent sudden noisy events such as pops and bangs

4http://acoustid.org
5http://acoustid.org/stats
6http://shazam.com
7http://www.shazam.com/music/web/about.html
8http://labrosa.ee.columbia.edu/matlab/fingerprint
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from being mistaken for musical onsets, the input signal is “whitened”. To perform the

whitening, a 40-pole linear predictor filter is generated from the input signal. This filter

changes each sample to be estimated by a smoothed value of the previous 40 samples. This

process reduces the amplitude of sudden peaks in the signal.

Once the audio has been downsampled and whitened it is transformed into the frequency

domain. Echoprint uses a 128 band cosine filter bank to perform this transform (Ramstad

and Tanem 1991). The filterbank is moved over the signal with a hop size of 32 samples.

The resulting frequency bands are grouped in to eight equally spaced bins by summing the

absolute difference of adjacent bands. The eight bins a equally spread out from 0 Hz to

5512.5 Hz.

3.1.2 Hashing

Echoprint hashes are calculated based on the time difference between musical onsets in

each band. The first step of the hashing process is to detect the onsets in the audio signal.

Onsets are detected in each frequency band independently. In each band, an envelope

follower is used to measure the amplitude of the band. When the amplitude reaches a

threshold, an onset is registered. After an onset has been detected, 128 samples must

pass before the next onset. The amplitude of the onset is multiplied by an exponentially

decaying curve to calculate a new threshold value. Subsequent detected onsets must exceed

this threshold in order to be counted. The multiplier decay is adaptive to the number of

onsets that are being detected. Echoprint has a target of generating one onset per second

in each frequency band. If onsets are being generated at more than this rate, the multiplier

decay is increased, resulting in a larger threshold to exceed. If the rate of onsets decreases

too much, the multiplier is decreased to compensate.

Figure 3.1 shows a graphical view of the spectrogram of an audio track generated by

the filter bank, and split in to eight bands. Onsets in each band are superimposed over the

top. Onsets can occur at different times in each frequency band.

To encode the onsets to numerical values, the algorithm considers the time of each onset

(o) and the time of its four successors (s1–s4). A hash value is created by taking the time

delta between pairs of the five onsets (Figure 3.2), and the band that they occur in.

The two hash values and band index are stored in a 40 bit (5 byte) number (two bytes

for each delta and 1 byte for the band index). The number is reduced to a 32 bit integer
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Figure 3.1 Onsets detected by Echoprint on eight frequency bands for the
first 30 seconds of “Life on Mars”, by David Bowie.

bytes 1–2 s1 − o s1 − o s2 − o s1 − o s2 − o s3 − o
bytes 3–4 s2 − s1 s3 − s1 s3 − s2 s4 − s1 s4 − s2 s4 − s3

Figure 3.2 Calculating the time delta between pairs of onsets to create a
hash.

with the MurmurHash algorithm (Appleby 2009).

Each onset and set of successors generates six hashes. By pairing onsets and successors,

the algorithm adds robustness against the failure of onsets to be detected. If one onset is

missed then there will still be some matching hashes at that point in time. This hashing

method results in approximately 48 hashes per second of audio (8 bands, 1 onset per second,

6 hashes per onset).

3.1.3 Storage

Hashes are paired with the time that the onset occurs in the audio query. The offset

hash pairs for a single recording are split into a number of sub-recordings, each 60 seconds

long, overlapping with the previous sub-recording by 30 seconds. Hashes are split in this

manner because the matching component of the system scores recordings by the number of

times a hash in the recording matches hashes in the query. If the hashes were not split then

long recordings would receive an unfair advantage at the lookup stage because recordings

with repeated content could generate the same hash value at many points in the recording.

The hash values are stored in an inverted index, where each value contains reference the
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sub-recording and time in the full recording that the hash occurs at. The Echoprint server

application uses Apache Solr9, a fast text search engine, to store the hash index. The full

set of offset hash values for each recording are stored in a separate database for use in

the lookup process.

3.1.4 Lookups

Lookups are performed in two steps. The same fingerprinting process is performed on the

query signal, resulting in a set of offset hash pairs. For the first step the time values are

discarded. The inverted index is searched to find all 60 second sub-recordings that contain

a hash value that is present in the query. These sub-recordings are ordered by the number

of times a recording hash matches a query hash. The 15 sub-recordings with the highest

number of matching hashes are returned. If more than one sub-recording for the same

recording is returned from this stage, all but one of them are discarded.

The final score of each candidate recording is calculated by trying to fit the query hashes

to the recordings. This is done by calculating the time difference between the onset time in

the query and the onset time in the recording for each hash in the recording, and keeping a

sum of the number of times each time difference occurs. If a query fingerprint is similar to a

recording fingerprint then there will be a large number the same time difference. This sum

is used as the score of each candidate recording. If the recording with the highest number

of matching hashes has more than twice as many matching hashes as the next recording

then it is returned as the match to the query, otherwise no match is returned.

3.2 Chromaprint

3.2.1 Preprocessing and transform

Input audio to Chromaprint is converted to mono and downsampled to 11025 Hz. The

audio signal is converted in to the frequency domain by performing a short-time Fourier

transform (STFT) with a frame size of 4096 samples (190 ms) and a 2/3 overlap (2731

samples). The resulting spectrum is converted to 12 bins representing the chroma of the

signal. Each bin in the chromagram represents the energy that is present in a musical note.

The 12 bins represent the 12 notes of the diatonic scale (Kurth and Muller 2008).

9http://lucene.apache.org/solr
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3.2.2 Hashing and storage

Figure 3.3 The match filters used in Chromaprint.

To calculate hash values for Chromaprint, the six filter shapes in Figure 3.3 are used.

Using the AdaBoost technique described by Jang et al. (2009), the algorithm generates 16

filters that are composed of different sizes of the six filters shown above. These 16 filters

are pre-calculated as part of the Chromaprint algorithm and do not change.

A 12-by-16 sliding window is moved over the chromagram one sample at a time. For

each frame, the 16 generated filters are applied to the window. To apply a filter, the filter

sums the amount of energy in the white area and subtracts the amount of energy in the

black area, resulting in a single value. Each of the filters quantizes the energy value to

a 2-bit number (from 0–3). The 2-bit value is encoded using Gray coding, resulting in a

binary sequence where each value differs from the previous and next value by only one bit.

The 2-bit hash values from each of the 16 filters are converted to a single 32-bit integer

representing the subfingerprint of the 12-by-16 window. The window is advanced one

sample to calculate the next subfingerprint (Figure 3.4). The subfingerprints are stored in

an inverted index pointing to the recording in which they occur, and the full fingerprint is

stored in a database.

Figure 3.4 A graphical representation of the Chromaprint for the first 10
seconds of “Ziggy Stardust”, by David Bowie. Each vertical block represents
a 32 bit integer, with 1 encoded as black an 0 as white.
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3.2.3 Lookups

The generated hashes are considered to be robust enough that at least one 32-bit hash

value in the reference recording also exists in the query. This assumption is used to select

the candidate recordings. Given a query, all tracks in the reference database that contain

one of the hashes in the query are retrieved from the inverted index.

Noise in the query can result in bits being flipped in subfingerprints. Due to the nature

of the Gray coding used in the hash generation step, slight changes to the chromagram are

manifested as a change in the 2 bit number returned from each filter. The real score of

each recording is calculated by counting how many subfingerprints in the query match a

subfingerprint in the candidate recording within a Hamming distance of 2 (that is, there

are 0, 1, or 2 changed bits between the two subfingerprints). The recording with the highest

score is returned as a match to the query.

3.3 Landmark

3.3.1 Preprocessing and transform

Before feature extraction is performed, the signal is converted to mono and the sampling

rate is reduced to 11025 Hz.

In order to transform the signal into the frequency domain the algorithm performs a

short-time Fourier transform (STFT, Portnoff 1981) with a window size of 46.4ms (512 sam-

ples) and a hop size of 32ms (352 samples). The Fourier transform results in frequency bins

21.5 Hz wide. A Hamming window is used on each frame before performing the transform.

3.3.2 Feature selection

After the signal has been converted to the frequency domain the next step is to select

features from the spectrum. The Landmark algorithm uses peaks in the amplitude of the

spectrum in each frame to find features to encode as the fingerprint.

To find the target maximum amplitude, the highest amplitude in the first 10 frames of

the STFT is found. Each time a peak is found, a threshold is updated to be 0.998 of the

amplitude of that peak. The next peak that is selected must exceed this threshold, after

which the threshold value is updated again. This amplitude decay is chosen to achieve

a target hash distribution of approximately 7 hashes per second. The threshold can be
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decreased to find more peaks in the audio, which can increase accuracy but at the expense

of computation time to create hashes from all of the peaks and search for them in the

database. One the peaks have been found in a frame the amplitude of the peaks is discarded.

The time (in 512 sample steps) and frequency (in 21.5 Hz bins) of each peak is stored for

the next step.

Once the amplitude peaks have been selected, pairs of peaks are gathered together. The

pairing algorithm only pairs peaks within 31 frequency bins (∼484 Hz) and 63 time steps

(2016 ms) of each other. Only the closest 3 peaks in time to each other are selected. This

“fanout factor” can be increased to generate more hashes to make matching more reliable,

at the expense of computation time. Plotting peak pairs on the STFT graph results in what

is called a “constellation map”, as the lines between peaks somewhat resemble constellations

in the night sky (Figure 3.5).

Figure 3.5 A “constellation map” of hash pairs generated by the Landmark
algorithm for a 15 second query of “Ashes to Ashes”, by David Bowie.

3.3.3 Hashing and storage

Hash pairs are represented as the two frequency bins that the points lie in, and the time

between them. These values are encoded in a simple hash. The reference algorithm uses a

20 bit hash, consisting of 8 bits for the starting frequency (F1), 6 bits for the delta between

F1 and F2 (FD), and 6 bits for the difference in time between the two peaks (TD). Time

differences are stored in units of 32 ms (the STFT hop size).



3.3 Landmark 35

Figure 3.6 shows how the details of a pair of peaks are encoded in to a single hash

value. This hash value is stored in an inverted index, with the hash number referencing

the recording ID and the time in the recording that the hash is from.

(start time, Freq 1, Freq 2, Time delta) = (917, 59, 44, 14)

= 00111010110001001110

\__F1__/\_FD_/\_TD_/

= 240718

Figure 3.6 Encoding features of the hash for a peak pair into a single 20
bit integer containing the start frequency (F1), the delta between F1 and F2
(FD) and the time delta between the peaks (TD).

3.3.4 Lookups

To perform a lookup of a query the same hashing process is performed to create a set of

hashes for the query signal. To increase the chance of generating matching hashes, three

more sets of hashes are created by advancing the signal by 1/4, 1/2, and 3/4 of the window

size and the STFT and repeating the hashing process. When finding peaks in the signal the

target density for landmarks is increased from 7 per second to 20 per second by reducing

the threshold multiplier to generate more possible matching hashes.

Once a set of hashes has been generated the lookup table is searched to return all refer-

ence recordings that contain a hash present in the query signal. The candidate recordings

are ordered by the number of matching hashes between the query and the candidate record-

ings. The candidate recording with the most matching hashes is returned as the match

to the query. Because each hash points to a recording as well as the offset that the hash

occurs in the recording the point in time that the query is from can be recreated.
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Chapter 4

Evaluating fingerprinting algorithms

A contribution of this thesis is a large-scale evaluation of a selection of publicly available au-

dio fingerprinting algorithms. This chapter discusses criteria of an evaluation suite designed

to compare different audio fingerprinting algorithms. The evaluation suite is designed to

allow many fingerprinting algorithms to be simultaneously evaluated, each using the same

input query parameters. The chapter begins by introducing the aspects of fingerprinting

systems that should be tested in an evaluation, before introducing a framework that fulfils

these requirements. We present an experiment that uses this evaluation suite to compare

the three fingerprinting algorithms that were discussed in Chapter 3. The results of this

experiment are presented in Chapter 5.

4.1 Choosing evaluation criteria

Many publications introducing new fingerprinting algorithms or improvements only pub-

lish retrieval results for experiments performed with a small number of recordings in the

reference database (e.g., Batlle, Masip, and Guaus (2002), 2000; Fragoulis et al. (2001),

450; Papaodysseus et al. (2001), 1000). While this small number of reference files is fine

for producing preliminary results for a retrieval system, a larger dataset is useful to be able

to identify issues that might only become apparent when the size of the dataset increases.

Small datasets increase the risk of not including styles of music that may cause problems for

a fingerprinting algorithm (Catalán 2009). To be representative of a wide range of music,

an evaluation should be performed using a large reference database.
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Other reports of algorithm success rates provide a larger database of test songs: Kastner

et al. (2002) use a database of 85,000 recordings, but only 30-second excerpts. Haitsma and

Kalker (2002) test with 10,000 tracks, and Wang (2003) with 20,000. Recent evaluations

test even more: Fenet, Richard, and Grenier (2011) use 30,000 files and Ellis, Whitman, and

Porter (2011) 100,000. This literature often only presents the retrieval results of the single

algorithm described in the paper and do not directly compare the algorithm with other

algorithms. Due to differences in the corpus used in different experiments, and different

ways of processing input signals, it can be difficult to compare the success rate of different

algorithms based on results from different publications. Many papers that present results

for modified queries refer to Haitsma et al. (2001) for a list of possible modifications, but

sometimes do not give complete descriptions of the modifications in order to accurately

reproduce the results. Some publications present comparative results of more than one

algorithm (Chandrasekhar, Sharifi, and Ross 2011), but only showing results for a specific

set of criteria. A comprehensive evaluation should compare many fingerprinting algorithms

under the same conditions.

A key feature of many audio fingerprinting systems is to be able to record queries in

a noisy environment and still obtain a correct match. Some algorithms are designed to

accurately identify music from a particular environment, for instance, music that has been

broadcast via FM radio and has been changed from its original signal prior to transmission.

In the absence of queries recorded from these situations, it can be useful to artificially

manipulate the query signal in order to simulate the behaviour of these sorts of treatments.

The result of an evaluation should be an indication of how good a fingerprinting system

is at identifying an unknown audio query given a corpus of known audio. Such a metric

should indicate how often the algorithm fails to identify a recording given a query, or gives

the wrong answer.

4.2 Evaluation framework

We have developed an audio fingerprinting evaluation framework to compare multiple fin-

gerprinting algorithms against each other. The framework is written in Python1, and uses

a MySQL2 database server to store intermediate data. The evaluation system was specifi-

1http://python.org
2http://mysql.com
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cally designed so that it can be run in parallel on many computers at the same time, with a

queue server used to distribute work between these separate computers. Any fingerprinting

algorithm can be tested using the framework through a module, a software interface that

provides a mapping between that fingerprinting algorithm and the evaluation suite. The

module interface presents a consistent API (Application Programming Interface) for the

evaluation system, allowing for different fingerprinting algorithms to be easily added to

an evaluation. The framework also allows for evaluations on one or more algorithms to

be run using queries created from the same collection of recordings with the same signal

modifications.

4.2.1 Distributed computation

The evaluation framework makes use of multiple computers in order to speed up the evalua-

tion process. The evaluation framework, which uses the RabbitMQ 3 queue broker system,

can be installed on many computers and run simultaneously. The queue contains a list of

actions to perform in the running of a single evaluation, for example, to take a single file,

turn it into a query, and then look up the query in a fingerprinting system. Each of the

algorithms being tested can run independently on different computers, or many computers

can concurrently run an evaluation for a single algorithm, to test simultaneous access to

the fingerprint lookup server. The queue system provides a locking mechanism to ensure

that no two workers attempt to perform a fingerprint action on the same file.

4.2.2 Modularity

Each algorithm to be tested is represented by a module in the evaluation framework.

Modules are required to fulfil a simple contract in order to give a consistent interface

for the framework to fingerprint and test different algorithms. The contract defines the

input and output of each step that the module performs. Figure 4.1 shows the contract

that modules in the evaluation framework must adhere to.

An audio fingerprinting system consists of two main steps: importing audio into a

reference database and querying the database for the metadata on an unknown piece of

audio. Both of these steps require a process that generates a fingerprint from a segment of

audio. The Fingerprint step takes an audio signal and computes the numerical fingerprint

3http://www.rabbitmq.com
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Figure 4.1 Contract for fingerprinting modules. Each module must be able
to generate a fingerprint, add a fingerprint to a database, and look up a query.

that represents the audio passed to it. The Ingest step takes the fingerprint of a whole

audio file and adds it to the algorithm’s reference database. In order to succinctly reference

the algorithm’s idea of a recording, the ingest method returns a short unique identifier that

maps to the fingerprint codes.

The evaluation framework maintains a mapping between source files and these finger-

print IDs. Comparison of these IDs provides the main metric for evaluating the accuracy

of the algorithms. The Lookup step takes a fingerprint that has been generated from a

short query of music and searches for the fingerprint in the algorithm’s database. It returns

the internal ID that it believes belongs to the query that was passed in. The evaluation

framework stores this identifier and can match it to the actual ID of the file used to perform

the query.

4.2.3 Repeatability

Experimental repeatability is important when performing evaluations. Having a record of

the steps performed during the evaluation can help to reproduce results and determine what

changes to the process result in an increase or decrease in accuracy. Being able to repeat

an experiment with the same inputs is also useful during the development of fingerprinting

algorithms. By performing the same evaluation on different variations of an algorithm it

is possible to determine what modifications to an algorithm increase its accuracy. In order



4.2 Evaluation framework 41

to ensure experiments can be repeated exactly, the evaluation framework keeps a record

of the choices of files it chooses while running as well as the query modifications made to

query audio.

4.2.4 Collecting statistics

The accuracy of fingerprinting systems can be measured by the successful retrieval rate. To

calculate retrieval rate statistics for each fingerprinting algorithm with a particular query,

the framework stores the result of each query to the fingerprinting system. The framework

maintains a list of all of the audio files being used in the evaluation. The framework can

compare the result to the expected fingerprint to determine if the fingerprinting system was

correct or incorrect. As a starting point, the evaluation suite provides tools to calculate the

true positive, false positive, true negative, and false negative rates. From these statistics

precision, recall, specificity, and sensitivity can be calculated. These metrics are discussed

in further detail in Section 4.3. By storing these results directly rather than computing

statistics as the evaluation is running, new statistics can be calculated if needed, without

needing to run the evaluation again.

In addition to retrieval statistics the framework also captures runtime information of

the algorithm, including the speed taken to fingerprint the audio file, and the speed taken

to perform a lookup. These metrics are important because some algorithms may trade

fingerprinting and lookup speed for accuracy.

4.2.5 Query modifications

Effective fingerprinting algorithms are able to identify audio queries that differ from the

reference recording in the database. These modifications can be due to noise introduced

if the query is recorded in a noisy environment (e.g., in a car or public venue) or because

the audio was intentionally modified (e.g., for radio transmission, or to reduce file size to

make downloads faster). In order to simulate these kinds of modifications to a query signal

the evaluation framework contains a number of filters that can alter the audio before it is

used as a query. The filters can be used individually or joined together in a sequence, using

the audio output of one filter as the input to another, to adjust many aspects of the audio

query at the same time (see Figure 4.2 for an example). The following list of modifica-

tions was created based on other publications that discuss the robustness requirements of
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fingerprinting algorithms (Haitsma et al. 2001; Cano et al. 2002). The name of each filter

as used in the evaluation suite is given in parentheses. The modifications were performed

with the Sound eXchange (sox) sound processing program4.

Figure 4.2 Chaining filters together. The output of the first filter (excerpt
section) is used as input to the second filter (adding noise), and so on, resulting
in a signal that can be used for a query.

• Query position & length (chop): A fingerprinting algorithm should be able to

identify an unknown recording from a short audio query. In many occasions the entire

song may not be able to be recorded, in which case the fingerprinting algorithm must

still be able to identify the query. Not only does this reduce the time needed to

generate a fingerprint and compare the fingerprint to the reference database, but it

also means that a person trying to identify a part of a recording in realtime does not

need to record the song for the full duration.

• Audio bitrate (bitrate): Music encoded in the MP3 format has its quality ex-

pressed as an audio bitrate, which characterises how much audio content remains in

the signal stream after parts of the frequency spectrum are removed from the signal

when it is encoded. MP3s encoded for transmission on the Internet often have low

bitrate in order to reduce the file size and therefore the time needed for download.

A notable example of this is the low-quality video setting on the video sharing site

YouTube. Many music videos are uploaded to YouTube at the lowest video quality

setting, which has an associated audio bitrate of 64 kbps. Audio encoded at this rate

has a noticeably lower quality than the same recording played from a CD but should

still be correctly identified by a fingerprinting algorithm.

• GSM audio: (gsm): Many commercial audio fingerprinting services provide the

ability to record audio using a smartphone and perform a lookup. Because such

devices were original designed for speech, the codec used to store recorded audio is

4http://sox.sourceforge.net
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designed to efficiently encode speech rather than music. This means that fingerprint

lookup systems that transmit queries over a phone call rather than the Internet need

to correctly identify audio that has been compressed for telephone transmission. The

GSM standard is an industry standard speech transmission format. GSM audio is

mono with a sample rate of 8000kHz.

• Playback speed: (samplerate): Audio broadcast by radio stations is often manipu-

lated by the station before transmission to make the audio sound more energetic. One

technique used is to adjust the sample rate of the audio, resulting in an increase in the

speed of the audio when played back. A side-effect of this sample rate modification

is that the pitch of the audio signal is also increased.

• Compression & Equalization: (fm): In order to make broadcast music sound more

appealing after being transmitted over FM radio, some radio stations increase the

amplitude of some frequency bands before transmitting the signal. These alterations

are used to make the audio sound better in certain listening situations, such as on

car stereos.

• Noise: (noise): To simulate the recording of an audio query from an environment

where there is ambient noise, the noise filter can mix in any audio with the query. The

evaluation framework provides some sample noise that can be used to create queries.

These noise samples are pink noise, noise from a car driving on the road, and spoken

conversation. Pink noise was chosen because it has the same perceptual loudness

at all frequencies, as opposed to other noise signal such as white noise. The noise

samples are available at three different volume levels, 0dB SPL, −10dB SPL, and

−20dB SPL. Audio at 0dB SPL is measured to have an normalised amplitude in the

range 1–−1. The −10dB steps are perceived as a halving of the volume of the audio.

The sample noise queries were downloaded from the freesound audio archive5. The

two noise sounds used are “Bar Crowd - Logans Pub - Feb 2007.wav”6 and “Driving

in Streamwood IL with the windows down (05-04-2009)”7.

5http://freesound.org
6http://www.freesound.org/people/lonemonk/sounds/31487/
7http://www.freesound.org/people/audible-edge/sounds/72830/
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4.2.6 Evaluation process

Figure 4.3 A flowchart of how the evaluation framework imports audio to
fingerprinting algorithms and then performs lookup queries

The main database and queue software for the evaluation system are installed on a

single computer. Each worker machine is able to connect to these servers to write results

and retrieve work. All workers have access to the same test files, accessible at the same

location on each worker. Figure 4.3 shows the steps that are performed when adding files

to a reference database and performing the evaluation.

To import the audio, the user specifies a source of files to be used for the evaluation. The

evaluation framework reads the list of files and performs a fingerprint action on each of them

with each fingerprint algorithm. This becomes the reference fingerprint for the recording.
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The fingerprint is sent to the fingerprinting system server, which stores it and returns

a unique identifier. The evaluation suite records the unique combination of input file,

fingerprint algorithm, and unique identifier. A small percentage of files are not fingerprinted

(by default, 20%). These files are used as a holdback set, and used to test the behaviour

of the fingerprinting lookup process when given a query for a recording that is not in the

reference database.

A run is an execution of a random set of files that are all modified with the same

query filter and then looked up in a fingerprint server. To directly compare two or more

fingerprinting algorithms, a set of runs with the same testset, same query filters, and

different fingerprint algorithms can be created.

To execute a run, a worker reads test files from a queue. It performs each of the query

modifications in order and uses the result as an input to the lookup method of the module

for the fingerprinting algorithm under test. The lookup method returns the unique identifier

that is the best match of the fingerprinting system for the given query. The framework

stores this result in the database. The result returned for this specific run can be compared

to the actual unique identifier created when the file was added to the fingerprint database.

4.3 Document retrieval statistics

During an evaluation of a fingerprinting system, the evaluation framework enumerates

through all of the files in the test set. Each file is modified in the same way to generate

a query signal. Some of the queries are known to be in the database of the fingerprinting

system, and others are known to not be in the database (the holdback set). When given a

query signal, a fingerprinting system can return one of two responses: It can respond that

there is no known recording in the database that matches the query or it can return the

identifier of a recording that it thinks matches the query.

Based on the known fact that a query is in the system database or not, and the response

from the system, the evaluation framework can classify the response in one of five categories:

• True positive (tp): The system correctly identifies the recording from the query

• True negative (tn): The system correctly identifies that no recording matches the

query

• False negative (fn): The system incorrectly reports that the query does not exist

in the database when it does
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• False positive (fp): The system incorrectly reports the wrong recording when the

correct recording does exist in the database

• False accept (fa): The system reports that a recording was found when it does not

exist in the database

Often the last two categories (false positive, false accept) are both reported as false positives—

the system reported a result (‘positive’) but it was incorrect. We report the false accept and

false positive values separately in order to discover if fingerprinting systems have different

error rates for both of these categories.

By counting the number of times each of these cases occur in an evaluation we can

calculate statistics that provide a general indication of the accuracy of a fingerprinting

system.

4.3.1 Precision, recall, and specificity

The precision (Equation 4.1a) of an algorithm measures how many of the positive results

reported by the the system were correct. A positive result occurs when a system reports

that a query exists in the reference database. This value could be correct (tp), incorrect

(fp), or the query is not in the database and the system should not have reported it (fa).

The recall (Equation 4.1b, also called sensitivity in some fields) measures how often

an algorithm returns the correct recording when the recording is known to exist in the

database. It weighs the number of correct responses (tp) against the number of times

the system says the query is not in the database (fn), or incorrectly chooses a different

recording (fp). It is important to consider both the precision and recall together when

evaluating the retrieval accuracy of a system. As a contrived example, a system could

successfully identify one known recording (tp = 1), and report that no recording exists

for 99 other queries, when they in fact do exist in the database (fn = 99). In this case

precision would be 100%, however the recall would only be 1%.

Finally, we consider specificity (Equation 4.1c), the measurement of how good the sys-

tem is at identifying negative results, where the query is known to not be in the reference

database. This metric compares the correct responses (tn) against responses where the

system incorrectly reports that the query matches a recording (fa).

In audio fingerprinting systems it is desirable to have a high precision and a high

specificity. Low values for either of these metrics means that the system is reporting the
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incorrect recording as the result to a query. We propose that fingerprinting systems should

favour precision and specificity over recall—that is, if at all uncertain about a match, the

system should report that the query is unknown, rather than give an incorrect answer.

precision =
tp

tp + fp + fa
(4.1a)

recall =
tp

tp + fn
(4.1b)

specificity =
tn

tn + fa
(4.1c)

From these three evaluation metrics it is possible to derive the size of the five classifi-

cation categories (tp, tn, fp, fn, fa).

We do not calculate the f -measure, a single measurement that weighs both the precision

and recall values. We favour instead the sensitivity metric presented in Section 4.3.3, as it

also considers the number of false accepts made by the retrieval system.

4.3.2 Confidence intervals

In addition to calculating retrieval metrics for a system, we can provide a confidence interval

surrounding the estimate. When we calculate the confidence interval of a value for the

fingerprinting algorithm, we are indicating a level of uncertainty where we expect the

distribution of that value to fall. With smaller data sets the confidence interval may be

wider, indicating that there are not enough reported values in order to make an accurate

estimate of a particular metric.

We use the “add two success and two failures” adjusted Wald interval as described by

Agresti and Coull (1998). In this equation, n represents the numerator of the fraction

for which the interval is being calculated, and d the denominator. For example, when

calculating the confidence interval of precision, n = tp, d = tp + fp. The lower limit (LL)

and upper limit (UL) compute an approximate 95% confidence that the metric falls within

the bounds of the limits.
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p0 =
n + 2

d + 4
(4.2a)

LL,UL = p0 ± 2 ·
√
p0 ·

1 − p0
d + 4

(4.2b)

The wider the confidence interval, the more uncertainty there is that the value reported

is representative of the sample.

4.3.3 Sensitivity

The final metric that we will show for the evaluation is the sensitivity of the retrieval system

(Macmillan and Creelman 1991). Sensitivity measures if a how much better a system is

than randomly choosing an answer.

We introduce one more metric, the false accept rate (far).

far =
fa

fa + tn
(4.3)

The false accept rate is a reformulation of specificity (Equation 4.1c). It measures the

probability of error rather than the probability of success, far = 1 − specificity.

The sensitivity measure calculates the difference between the mean values of recall and

far. The further apart these means are, the more the system is able to correctly identify

queries. Overlaps in the distributions of these values causes uncertainty that leads to false

positives, false negatives, and false accepts.

The sensitivity of the classifier, d′, is given by

d′ = Z(recall) − Z(far), (4.4)

where Z(n) is the inverse Gaussian distribution. The Z transform converts the mean

values into standard deviation units.

The d′ value indicates if a signal can be differentiated from a randomly selected answer.

The measure has a generally accepted upper limit of d′ = 4.65, when recall = 0.99 and

far = 0.01. It is possible, however, to compute values as high as 6.93 with some recall
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and far. A value of d′ = 0 indicates that recall = far and the selection of an answer

is effectively random. Higher values of d′ indicates that the system is able to successfully

discriminate between true and false answers.

If there are adjustable parameters in a fingerprinting system to trade off the recall and

far values then this trade off can visualised by plotting the d′ value for different settings on

an ROC (receiver operating characteristic) curve. This graph plots the trade off between

true positives and false positives. We do not report a metric based on the ROC curve in

this evaluation because we performed no parameter tuning for any of the tested algorithms.

4.4 A comparison of audio fingerprinting algorithms

4.4.1 Experiment

We performed an evaluation using the presented evaluation framework and the three finger-

printing algorithms introduced in Chapter 3. We wrote a module for each of the algorithms

in the experiment, fulfilling the ingest & lookup contract. The experiment was run using

the Codaich dataset (McKay, McEnnis, and Fujinaga 2006). This collection contains 30,283

unique audio files in MP3 format covering a wide range of genres such as pop, western clas-

sical, jazz, and a selection of world music. To test that the false accept rate (Section 4.3.3)

of the algorithms is low, we withheld 20% of the recordings in the dataset. As these files

were not added to the reference databases, when a query is made with one of the recordings

the fingerprinting system should return no match. The remainder of the recordings were

imported into the reference databases. We selected 20,000 files over 60 seconds in length to

perform the evaluation with. Each query file was modified using each of the modifications

shown in Table 4.1. These generated queries were used to perform a lookup using each

fingerprinting system. Results for this experiment are presented in Chapter 5. Each of the

fingerprinting algorithms were set up as follows.

4.4.2 Algorithm 1 setup: Echoprint

The Echoprint server software requires the Solr search server8 and Tokyo Tyrant9 key-value

store to be installed. The Echoprint server software10 package comes with a library written

8http://lucene.apache.org/solr
9http://fallabs.com/tokyotyrant

10http://echoprint.me/server
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Query start time Query length Query modifications
0 8, 15, 30 seconds none
30 8, 15, 30 seconds none
0 15, 30 seconds 96k MP3 bitrate
0 15, 30 seconds 64k MP3 bitrate
0 15, 30 seconds Convert to mono
0 15, 30 seconds Change sample rate to 22k
0 15, 30 seconds Change sample rate to 8k (GSM)
0 15, 30 seconds FM Radio modifications
0 15, 30 seconds Increase volume by 20%
0 15, 30 seconds Decrease volume by 50%
0 15, 30 seconds Decrease volume by 20%
0 15, 30 seconds Increase speed 1.0%
0 15, 30 seconds Increase speed 2.5%
0 15, 30 seconds Increase speed 5.0%
0 15, 30 seconds Decrease speed 1.0%
0 15, 30 seconds Decrease speed 2.5%
0 15, 30 seconds Decrease speed 5.0%
0 8, 15, 30 seconds Mix 0dB SPL pink noise
0 8, 15, 30 seconds Mix −10dB SPL pink noise
0 8, 15, 30 seconds Mix −20dB SPL pink noise
0 8, 15, 30 seconds Mix 0dB SPL road noise
0 8, 15, 30 seconds Mix −10dB SPL road noise
0 8, 15, 30 seconds Mix −20dB SPL road noise
0 8, 15, 30 seconds Mix 0dB SPL bar noise
0 8, 15, 30 seconds Mix −10dB SPL bar noise
0 8, 15, 30 seconds Mix −20dB SPL bar noise

Table 4.1 Query modifications used in the experiment
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in Python to interact with this software to store fingerprints in the databases and perform

lookups. The library also calculates the final distance measure between an input query and

results from the search server.

4.4.3 Algorithm 2 setup: Chromaprint

We installed the Acoustid server11 application. The server uses the PostgreSQL database12

and a custom in-memory inverted index, acoustid-index, in order to speed up the lookup

process. An existing Python library, pyacoustid13 was used to interact with the acoustid

webservice from the evaluation software.

4.4.4 Algorithm 3 setup: Landmark

The author of the Landmark fingerprinting code makes available a compiled binary, audf-

print14, for the purposes of evaluating the algorithm. By using a compiled binary it was

unnecessary to interact with Matlab, which the system was written in. The only additional

dependency is the freely available Matlab runtime. Because the audfprint system did not

have a separate server component, and the startup process took some time (a matter of

seconds) the lookup method in the Landmark module was adapted to process queries in

blocks of 100 files. A list of queries was sent to the audfprint lookup program, which

returned a list of predicted recordings.

11http://acoustid.org/server
12http://postgres.org
13https://github.com/sampsyo/pyacoustid
14http://labrosa.ee.columbia.edu/matlab/audfprint
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Chapter 5

Results

This chapter presents the results of the experiment described in Section 4.4. We present

precision, recall, specificity, and d′ values for all types of modified query and compare the

results returned by each fingerprinting system.

5.1 Query length

Table 5.1 shows the accuracy statistics for fingerprinting algorithms with differing query

lengths1. For the queries starting at time t = 0 we see that the precision for Echoprint and

Chromaprint are almost 100%. The specificity for all algorithms is also high, indicating

that there are few false alarms. The high recall and specificity values for Echoprint and

Chromaprint show that they are able to generate fingerprints that uniquely identify almost

all recordings in the reference database. The Landmark algorithm has a lower recall due

to many recordings having identical hashes generated, which we discuss in further detail

below.

The Chromaprint algorithm does not work well on short queries (8 s), but as the query

length is increased to 30 seconds it provides the highest accuracy of all the algorithms.

Nevertheless, it only achieves high precision and recall on queries that are taken from the

beginning of the recording, not from queries starting from part way through the recording.

This means that Chromaprint is only useful in cases where the query can be chosen from the

1In this and all other tables presented in this section, accuracy percentages are rounded to the nearest
whole number. Error limits are bounded within the range 0%–100%
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Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60
Algorithm P LL UL P LL UL P LL UL P LL UL P LL UL P LL UL

Echoprint 100 100–100 100 100–100 100 99–100 91 88–94 99 99–100 100 99–100
Chromaprint 100 98–100 99 99–100 99 99–100 0 0–100 100 16–100 100 44–100
Landmark 94 93–94 94 94–94 94 94–94 94 94–95 94 94–94 94 93–94

(a) Precision (%)

Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60
Algorithm R LL UL R LL UL R LL UL R LL UL R LL UL R LL UL

Echoprint 63 63–64 90 90–91 96 96–96 2 2–2 55 54–56 87 86–87
Chromaprint 3 3–3 96 96–97 99 99–99 0 0–0 0 0–0 0 0–0
Landmark 63 63–64 88 87–88 94 94–94 63 63–64 88 88–89 92 92–93

(b) Recall (%)

Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60
Algorithm S LL UL S LL UL S LL UL S LL UL S LL UL S LL UL

Echoprint 99 99–100 99 98–99 98 98–99 100 99–100 99 99–99 99 98–99
Chromaprint 100 100–100 99 99–100 99 99–100 100 100–100 100 100–100 100 100–100
Landmark 99 99–100 99 98–99 98 98–99 99 99–99 99 98–99 98 98–99

(c) Specificity (%)

Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60
Algorithm d′ d′ d′ d′ d′ d′

Echoprint 2.80 3.55 3.90 0.74 2.49 3.34
Chromaprint 0.46 4.35 4.81 0.00 0.00 0.00
Landmark 2.82 3.41 3.65 2.77 3.42 3.54

(d) Sensitivity (d’)

Table 5.1 Accuracy results for unmodified queries, three fingerprinting al-
gorithms, and six query lengths with lower limits (LL) and upper limits (UL).
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recording (e.g., when identifying files on a computer). In which case, short query lengths

are less important, as a query of any length can be taken from the file.

For short queries (8 s) both Echoprint and Landmark give similar results, however Land-

mark gives more consistent results when the query is from any point in the file compared

to both Echoprint and Chromaprint, even though it has a lower precision. The Landmark

algorithm performs poorly with 8-second queries, compared to 15- and 30-second queries.

This result was unexpected, as the Shazam smartphone application which is at least par-

tially based on this algorithm has been observed to identify music recorded in a room with

queries about this length.

The precision values for the Landmark algorithm are significantly lower than the other

two algorithms, indicating that the Landmark system often returns the incorrect recording

in response to a query. To show this further, we give the breakdown of results for the case

of 30-second queries to each of the three algorithms (Table 5.2). This evaluation was out

of 20,000 recordings.

FP system True positive True negative False negative False positive False accept

Expected 15959 4041 0 0 0
Echoprint 15300 3980 655 4 61
Chromaprint 15813 4012 88 58 29
Landmark 15017 3966 61 881 75

Table 5.2 The expected retrieval numbers for a 30-second query and actual
numbers from the three fingerprinting systems.

Landmark has a significantly higher number of false positive results than the other two

systems. This means that it gave the wrong answer to a query often. We observed through

the results that the fingerprint algorithm would sometimes generate the same hashes for

different recordings. When a query was made for one of these recordings, more than one

recording would be returned with matching hashes. If the number of matching hashes was

the same in more than one recording then it was not possible for the algorithm to make a

decision on what recording was correct.

We can see that Echoprint has a very low false positive rate, though this is at the

expense of its false negative rate, which is significantly higher than both Chromaprint and

Landmark.
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5.2 Modified queries

The next series of tests involve modifying the queries in ways that represent real-world query

modifications. These tests changed the bit rate, sample rate, speed, volume, frequency

equalization, and number of channels of the queries (as described in Section 4.2.5) before

searching the fingerprint database. The results for this series of tests are presented in

Tables 5.3–5.6.

The query modification that had the largest impact on the accuracy rate was the altering

of the speed of the query. Even small increases or decreases in the speed (1%) caused a

complete failure in recall rates for Echoprint and close to 0% recall for Landmark. Only

Chromaprint achieved some success, with 27% recall for 30-second queries that had been

sped up by 1% and 18% recall for queries that had been slowed down by the same amount.

Increasing and reducing the speed by more than 1% resulted in effectively no accuracy.

Lowering the sample rate to 8kHz also had an effect on recall rates. Audio sampled at

8 kHz has a Nyquist frequency of 4 kHz, meaning that there are no frequencies above this

value present in the signal. As all of the algorithms use frequencies above 4 kHz to generate

the hashes that form the fingerprint of a query, the hashes will be different on audio that

originally contained audio above this frequency.

Changing the bitrate of queries encoded in MP3 format, adjusting the volume, and

changing frequency equalisation had a small effect on the retrieval rates. Converting the

queries to mono and reducing the sample rate to 22 kHz had no effect on the accuracy. All

of the algorithms perform a preprocessing step on the signal before generating a fingerprint.

The preprocessing step for all algorithms reduces the sample rate to 11 kHz and converts

the signal to mono, and so making these modifications before sending the query to the

fingerprinter has no effect.

For all of the query modifications that did not significantly affect the retrieval rate (ex-

cluding the speed increase and the sample rate of 8 kHz), Chromaprint performed the best

in almost all situations, except those that did not start at the beginning of the recording.

From Section 5.1 it was seen that Chromaprint performed poorly on any query not taken

from the beginning of the recording. For modified queries that were to be taken from any

point in a recording both Echoprint and Chromaprint give similar results, with Echoprint

winning slightly due to its increased precision.
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Echoprint Chromaprint Landmark

15 s 30 s 15 s 30 s 15 s 30 s

d′ d′ d′ d′ d′ d′

Original query 3.55 3.90 4.35 4.81 3.41 3.65
Reduce bitrate

96 Kbps 3.38 3.72 3.86 4.70 3.27 3.64
64 Kbps 3.32 3.76 3.84 4.68 3.27 3.64

Speed up
1% 0.00 0.00 1.97 2.27 0.97 1.41
2.5% 0.33 0.00 1.10 1.50 0.00 0.00
5% 0.33 0.29 0.00 0.00 1.16 0.97

Slow down
1% 0.00 0.00 0.72 2.58 0.87 1.23
2.5% 0.29 0.31 0.00 0.00 0.97 0.00
5% 0.52 0.40 0.00 0.00 0.00 0.00

Adjust volume
50% 3.37 3.72 3.84 4.69 3.30 3.66
80% 3.34 3.75 3.83 4.70 3.28 3.65
120% 3.34 3.74 3.85 4.67 3.30 3.63

Convert to mono 3.51 3.89 3.91 4.71 3.16 3.62
Downsample

22 kHz 3.51 3.90 3.82 4.70 3.16 3.63
8 kHz 2.15 2.15 2.88 4.21 1.66 2.39

Radio EQ 3.43 3.81 3.89 4.70 3.40 3.65

Table 5.6 Sensitivity (d′) for modified queries
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5.3 Noise

The final experiment took three different types of noise and mixed it in to the audio query

at three different volume levels before performing the query. The retrieval results are

presented in Tables 5.7–5.10.

Adding noise to queries had a significant effect on the accuracy rates of all of the finger-

printing algorithms that were tested. The recall statistics visibly show that the accuracy

of all fingerprinting systems increase both as the query length increases, and as the level

of added noise is reduced.

For all algorithms the precision and specificity remain similar to the original unmodified

queries, indicating that the systems are not making any more false positives or false alarms.

The majority of the errors are instead false negatives, resulting in a drop in recall, where the

system was unable to identify the recording when given a query. Chromaprint introduces

some uncertainty in precision values for shorter queries and louder noise, e.g., Pink noise

and Car noise 8 s.

An interesting observation of the precision statistics for the Landmark algorithm is

that it actually increases for almost all query modifications, including very noisy queries.

Recalling from Section 5.1 that the Landmark algorithm had lower precision than expected

because it tended to provide a match with very few matching hashes, it seems that with

the noise added to the query the number of matching hashes decreased enough for the

landmark system to no longer consider recordings to be the same as the query.

With queries mixed with noise at 0 dB all algorithms perform poorly, but Echoprint

manages to edge out the other two. It performs worse on uniform pink noise than on the

other two types of noise, which are less uniform. Specificity is high for all algorithms at all

types of noise and noise levels, indicating that the added noise is not creating any hashes

that match recordings in the reference database.

For shorter length queries, Echoprint has the best recall. It also has a very high preci-

sion, close to 100% most of the time. Along with the high specificity, this shows that the

algorithm frequently does not find a match, but when it does there is a good chance that

the result is correct.

Again, for quiet noise and long queries, Chromaprint comes out on top. For louder and

shorter queries, Echoprint is better, followed by Landmark.



62 Results

8 s 15 s 30 s

P LL–UL P LL–UL P LL–UL

Echoprint
Original query 100 100–100 100 100–100 100 99–100
Pink noise

0 dB 99 96–100 99 98–99 99 99–100
-10 dB 100 99–100 100 99–100 100 99–100
-20 dB 100 99–100 100 99–100 100 99–100

Car noise
0 dB 100 99–100 100 99–100 100 99–100
-10 dB 100 100–100 100 100–100 100 100–100
-20 dB 100 100–100 100 100–100 100 100–100

Babble noise
0 dB 99 99–100 99 99–100 99 99–100
-10 dB 100 100–100 100 100–100 100 99–100
-20 dB 100 100–100 100 100–100 100 99–100

Chromaprint
Original query 100 98–100 99 99–100 99 99–100
Pink noise

0 dB 0 0–100 95 73–100 100 97–100
-10 dB 98 88–100 99 99–100 99 99–100
-20 dB 100 98–100 99 99–100 99 99–100

Car noise
0 dB 100 83–100 99 99–99 99 99–100
-10 dB 100 73–100 99 98–100 99 99–100
-20 dB 99 97–100 99 99–100 99 99–100

Babble noise
0 dB 100 50–100 100 96–100 99 99–100
-10 dB 100 96–100 99 99–100 99 99–100
-20 dB 100 98–100 99 99–100 99 99–100

Landmark
Original query 94 93–94 94 94–94 94 94–94
Pink noise

0 dB 95 90–98 96 95–98 96 96–97
-10 dB 96 95–97 96 95–97 96 95–96
-20 dB 96 95–96 96 95–96 95 95–95

Car noise
0 dB 96 95–97 96 95–96 95 95–96
-10 dB 95 95–96 95 94–95 94 94–95
-20 dB 95 94–95 94 94–95 94 94–94

Babble noise
0 dB 96 95–97 96 95–97 96 95–96
-10 dB 96 95–96 96 95–96 95 95–96
-20 dB 95 95–96 95 95–95 95 94–95

Table 5.7 Precision for queries modified with added noise
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8 s 15 s 30 s

R LL–UL R LL–UL R LL–UL

Echoprint
Original query 63 63–64 90 90–91 96 96–96
Pink noise

0 dB 1 1–2 5 5–6 8 8–9
-10 dB 14 13–14 30 29–30 39 39–40
-20 dB 39 38–39 62 62–63 73 72–73

Car noise
0 dB 25 24–25 48 47–48 58 58–59
-10 dB 64 63–65 84 84–85 91 90–91
-20 dB 77 76–77 92 92–93 96 96–96

Babble noise
0 dB 11 10–11 20 19–20 18 18–19
-10 dB 35 34–36 52 51–53 55 55–56
-20 dB 60 59–61 77 76–77 82 81–82

Chromaprint
Original query 3 3–3 96 96–97 99 99–99
Pink noise

0 dB 0 0–0 0 0–0 2 1–2
-10 dB 0 0–0 19 19–20 48 47–49
-20 dB 2 2–2 72 71–73 90 90–90

Car noise
0 dB 0 0–0 12 12–13 35 34–36
-10 dB 0 0–0 7 7–8 24 23–24
-20 dB 1 1–1 58 57–59 81 80–81

Babble noise
0 dB 0 0–0 1 1–1 6 5–6
-10 dB 1 1–1 33 32–34 63 63–64
-20 dB 3 2–3 78 77–78 93 92–93

Landmark
Original query 63 63–64 88 87–88 94 94–94
Pink noise

0 dB 1 1–1 4 4–4 16 16–17
-10 dB 7 7–7 21 21–22 47 46–48
-20 dB 22 21–22 46 45–46 72 71–72

Car noise
0 dB 14 13–14 34 34–35 63 62–64
-10 dB 42 41–42 69 68–70 87 87–88
-20 dB 54 53–54 79 79–80 92 91–92

Babble noise
0 dB 9 8–9 16 16–17 33 32–34
-10 dB 26 26–27 44 43–44 65 64–66
-20 dB 43 42–44 65 64–66 82 82–83

Table 5.8 Recall for queries modified with added noise
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8 s 15 s 30 s

S LL–UL S LL–UL S LL–UL

Echoprint
Original query 99 99–100 99 98–99 98 98–99
Pink noise

0 dB 100 100–100 100 100–100 100 100–100
-10 dB 100 100–100 100 99–100 99 99–100
-20 dB 99 99–100 99 99–99 99 99–99

Car noise
0 dB 100 99–100 99 99–100 99 99–99
-10 dB 100 99–100 99 99–99 99 98–99
-20 dB 99 99–100 99 98–99 99 98–99

Babble noise
0 dB 100 100–100 100 99–100 100 99–100
-10 dB 100 99–100 99 99–100 99 99–99
-20 dB 99 99–100 99 99–99 99 98–99

Chromaprint
Original query 100 100–100 99 99–100 99 99–100
Pink noise

0 dB 100 100–100 100 100–100 100 100–100
-10 dB 100 100–100 100 100–100 100 100–100
-20 dB 100 100–100 100 99–100 99 99–100

Car noise
0 dB 100 100–100 100 100–100 100 100–100
-10 dB 100 100–100 100 100–100 100 100–100
-20 dB 100 100–100 100 100–100 99 99–100

Babble noise
0 dB 100 100–100 100 100–100 100 100–100
-10 dB 100 100–100 100 100–100 100 99–100
-20 dB 100 100–100 100 99–100 99 99–100

Landmark
Original query 99 99–100 99 98–99 98 98–99
Pink noise

0 dB 100 100–100 100 100–100 100 100–100
-10 dB 100 100–100 100 99–100 99 99–99
-20 dB 100 100–100 99 99–100 99 98–99

Car noise
0 dB 100 100–100 99 99–100 99 99–99
-10 dB 100 99–100 99 99–99 98 98–99
-20 dB 100 99–100 99 98–99 98 98–99

Babble noise
0 dB 100 100–100 100 100–100 100 99–100
-10 dB 100 100–100 99 99–100 99 99–99
-20 dB 100 99–100 99 99–99 98 98–99

Table 5.9 Specificity for queries modified with added noise
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8 s 15 s 30 s

d′ d′ d′

Echoprint
Original query 2.80 3.55 3.90
Pink noise

0 dB 0.99 1.22 1.55
-10 dB 1.79 2.08 2.19
-20 dB 2.26 2.69 2.91

Car noise
0 dB 1.97 2.40 2.61
-10 dB 2.95 3.34 3.59
-20 dB 3.26 3.68 3.95

Babble noise
0 dB 1.60 1.78 1.80
-10 dB 2.28 2.56 2.53
-20 dB 2.79 3.08 3.12

Chromaprint
Original query 0.46 4.35 4.81
Pink noise

0 dB 0.00 0.00 0.17
-10 dB 0.00 2.43 2.73
-20 dB 0.25 3.24 3.77

Car noise
0 dB 0.00 2.33 2.59
-10 dB 0.00 0.87 2.46
-20 dB 0.05 2.98 3.41

Babble noise
0 dB 0.00 0.00 0.74
-10 dB 0.00 2.59 3.00
-20 dB 0.40 3.36 3.93

Landmark
Original query 2.82 3.41 3.65
Pink noise

0 dB 0.00 1.43 1.83
-10 dB 1.62 1.90 2.34
-20 dB 2.03 2.36 2.79

Car noise
0 dB 1.94 2.16 2.64
-10 dB 2.43 2.85 3.26
-20 dB 2.70 3.07 3.50

Babble noise
0 dB 1.94 1.89 2.25
-10 dB 2.21 2.35 2.69
-20 dB 2.48 2.75 3.09

Table 5.10 Sensitivity (d′) for queries modified with added noise
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5.4 Discussion

This evaluation tested three fingerprinting algorithms on a test set of 20,000 recordings.

Each test file was modified in a different way to represent the kind of query that a finger-

printing service might receive, including audio that had spectral content removed, altered,

or was mixed with varying levels of noise.

The Chromaprint algorithm performed well with almost all modified queries, especially

when the query was long. One major failing of the Chromaprint algorithm is that it requires

queries to be taken from the beginning of the recording. It is possible that some changes to

the matching algorithm for this fingerprinting system would result in high retrieval rates

for queries taken from different points in the recording as well.

For short signals, both Echoprint and the Landmark algorithm perform well. The

Landmark algorithm has a lower recall, resulting in a significant number of false positive

matches. It is likely that the recall of the Landmark algorithm can be improved by adjusting

some of the parameters used to generate the hashes from an audio signal.

For query identification on audio that has light to moderate modifications or noise,

Echoprint is the recommended fingerprinting system to use. For queries using exact copies

of the recordings, Chromaprint is the ideal choice.
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Chapter 6

Conclusion and further work

This thesis presented a review of fingerprinting algorithms and developed a new evalua-

tion framework which was used to compare the accuracy of three different fingerprinting

algorithms when presented with different audio queries.

Audio fingerprinting algorithms convert audio signals into a sequence of numerical codes

that not only uniquely identify individual recordings, but are the same for perceptually

similar sounding music. An audio fingerprinting algorithm performs five main steps in gen-

erating a fingerprint: preprocessing, framing, transform, feature extraction, and fingerprint

generation. The first chapter gave a general background of audio fingerprinting and de-

scribed the fingerprinting process. Specific audio fingerprinting algorithms were described

in Chapter 2 along with a history of audio fingerprinting and technologies that are related

to audio analysis and fingerprinting.

Chapter 3 presented an analysis of three audio fingerprinting algorithms that are widely

used in industry and academia. The three algorithms, Echoprint, Chromaprint, and the

Landmark algorithm perform steps for preprocessing, framing, and transform, but differ in

the feature extraction and fingerprint generation stages. The algorithms also use different

techniques when identifying queries in a reference database.

We introduced a list of criteria that should be considered when evaluating audio finger-

printing algorithms in order to accurately compare the results of two or more algorithms.

Chapter 4 introduced an experimental framework that was designed to perform this evalu-

ation. The framework was developed to allow many different fingerprinting algorithms to

be tested simultaneously. The framework allows the same queries to be made to multiple
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fingerprinting algorithms to see how they respond to identical stimuli. The framework has

a library of alterations that can be made to queries to simulate the way that real-world

signals differ from reference audio.

We performed an evaluation of the Echoprint, Chromaprint, and Landmark fingerprint-

ing systems using the evaluation framework. Each of the fingerprinting systems was tested

with 63 different types of query. The results of this evaluation were discussed in Chapter 5.

The results show that for a fingerprinting environment using audio that is very close to

the original signal, the Chromaprint algorithm is an excellent choice, however, it does not

work well when presented with audio taken from any point in a recording. For queries that

contain a moderate amount of noise, both Echoprint and the Landmark algorithm are good

choices, with the Landmark algorithm performing slightly better on shorter queries.

6.1 Contributions

The major contribution of this thesis was the development of a framework for performing

repeatable evaluations of audio fingerprinting algorithms. This framework can be used by

other researchers while developing new algorithms and for testing their algorithms against

other systems. Because the framework is able to repeat the conditions of an experiment

it is suitable for evaluating different versions of the same algorithm as well as comparing

differing algorithms.

The execution of an evaluation of the three major audio fingerprinting algorithms is

also a contribution of this thesis. The success of the evaluation show that a comprehensive

experiment can be performed in a controlled manner with known audio and known query

modifications. More audio fingerprinting algorithms could be added to this evaluation to

obtain more results. The results of the evaluation are useful to people wanting to choose

an audio fingerprinting algorithm for their own use.

6.2 Further work

The evaluation framework presented here is expandable and can be used to evaluate

other fingerprinting systems. We envisage a MIREX-like evaluation competition (Downie

et al. 2005) in which researchers can submit fingerprinting algorithms that are evaluated

against other entries.
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In order for this kind of evaluation to be performed, an infrastructure around these

evaluations would need to be established. One requirement for real-world evaluations is

access to a large reference database of audio. We started to move in this direction with our

30,000 recording evaluation, but commercial fingerprinting systems still contain orders of

magnitude more songs (millions) in their database. Collecting a large corpus of audio while

remaining within distribution rights may be difficult. Testing with such a large database

also takes time. Even for our modest test of 20,000 files, a full evaluation for a single type

of query modification took over 4 hours. This kind of evaluation can be split over many

machines in order to reduce the total time required for the evaluation, but it still represents

a large amount of computation time needed to test a wide range of query types.

We would like to see queries that are more representative of real-world environments.

For example, the queries that were created by mixing noise with the original query recording

were generated synthetically. A more real-world evaluation situation would be to record

audio in the environment that we would like to test, for example, with a sound recorder

in a car or cafe. The amount of noise in these recordings would differ based on when the

recording was made. The recordings would need to be manually classified to ensure that

they were evaluated correctly. For queries simulating radio playback we could either record

real playback from a radio broadcast, or perform an analysis on a broadcast signal to see

how it differs from the signal distributed on CD.

The framework that has been developed is a powerful tool for testing a large number

of fingerprinting algorithms and evaluating their accuracy. We hope that by providing

direct comparisons of algorithm accuracy in a large-scale public evaluation contest, we

can generate competition to advance the speed and accuracy of fingerprinting algorithms

further in the future.
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